
Long Short-Term Memory for Bitcoin Price Prediction
Jordan Jones

Florida Polytechnic University
Jordanjones2078@floridapoly.edu

Doga Demirel
Florida Polytechnic University, Corresponding Author

ddemirel@floridapoly.edu

ABSTRACT
With time-series data being prevalent everywhere, there is a need
to predict this data accurately. This kind of data includes weather
data, financial data such as stock price, and cryptocurrency price.
Most of the trades in the stock market in this day and age are being
made using artificial intelligence. An estimated 50% of trades were
done using an algorithm, which increased to 60% in 2020 [1]. This
highlights the demand for reliable and accurate predictions. The
prediction of the price is very challenging. Some success has been
seen when predicting stock prices, but not many studies have been
done on cryptocurrency. Cryptocurrency, specifically Bitcoin, has
seen a substantial increase in popularity, and the price has reflected
this popularity. The price also follows patterns specifically when
reaching new all-time highs. In this work, an Artificial intelligence
is created and trained on the previous data to observe these patterns
and predict the next price. The artificial intelligence chosen for this
subject is Long short-term memory (LSTM). LSTMs are capable
of finding patterns in time series data. LSTM solves the vanishing
gradient problem present in the RNN (Recurrent Neural Network).
The Market Price of Bitcoin is used as input here. The data values
for input range from 20,000 up to 65,000 in testing. Once an optimal
starting point is found, there is an 80/20 split of data, 80 percent
of the data is used for training and 20 is used for testing. With
the data being split, one of the most important jobs is figuring out
the optimal lags (how far back into the past) when used to predict
values. This range for this experiment is set to ten previous price
days. Epochs (number of iterations) and Batch size (how much of
the training data is used per epoch) are tested at different values to
find optimal solutions. With batch size values such that batchSize ∈
{20, 21. . .26} and epochs such that epochs ∈ {10, 20. . ..70}. Overfitting
is hard to detect and thus can be an issue with too many epochs and
smaller batch sizes (smaller means more of the training data is used).
Too little and the LSTM will not learn the data patterns and thus
will not have good accuracy. This is why different configurations
are used in the experiment to maximize accuracy. This LSTM was
used to achieve a Mean Absolute Percentage Error score of 3.23%
and a Root Mean Squared Error score of 1892.87 when predicting
next-day prices throughout 350.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICISDM 2022, May 27–29, 2022, Silicon Valley, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9625-7/22/05. . . $15.00
https://doi.org/10.1145/3546157.3546162

KEYWORDS
Bitcoin, LSTM, Prediction

ACM Reference Format:
Jordan Jones and Doga Demirel. 2022. Long Short-Term Memory for Bitcoin
Price Prediction. In 2022 the 6th International Conference on Information
System and Data Mining (ICISDM 2022), May 27–29, 2022, Silicon Valley, CA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3546157.
3546162

1 INTRODUCTION
Time-series is "a set of data collected sequentially, usually at fixed
intervals of time" [2]. With how popular Bitcoin has gotten recently
and many stores such as Starbucks and PayPal accepting as pay-
ment proves that we are moving towards a decentralized digital
economy [3]. Time series data is present everywhere, from weather
reports to the stock market. Time series data is just data collected at
consecutive time intervals. Predicting this data is a challenging task
because the data is observed and recorded. This data doesn’t always
have a clear pattern to observe. That is why a neural network is
required to find the pattern. Most prediction models only attempt to
predict the next day’s price, with some only predicting if the price
goes up or down the next day. In terms of the price, Bitcoin can
be viewed as similar to a stock’s price. Shares of stock are traded
identical to how Bitcoins are traded. This allows us to use some
of the research done on stock market analysis and prediction as
a starting point. The previous research will not be a 1 to 1 copy
but can help get us started. The reason for Bitcoin is the price has
increased from $226 in April of 2015 to $65,000 on Nov. 15, 2021.
This price increase is a 28,000% increase in 6 years [4]! With this
popularity and meteoric price rise, Bitcoin is traded like most stocks.
Cryptocurrencies are a relatively new concept; there isn’t many
historical data to go off.

The volatility of Bitcoin cannot be understated. The price can rise
or drop based on public news and Twitter like any stock. When Elon
Musk tweeted that Tesla would not accept Bitcoin for transactions
anymore, the price of Bitcoin dropped by 15% [5]. With the concept
of Bitcoin being very new, stability in some countries is hard to come
by. China recently banned all crypto-related activities, and this
includes mining. China was one of the biggest countries for mining
Bitcoin. This announcement caused a drop of 5% in the total price of
Bitcoin [6]. With the ban from China, other countries such as India
are proposing a ban [7]. The approach developed here provides
accurate results when predicting something as volatile as Bitcoin.
This is done by changing hyperparameters and only focusing on the
more recent data points. These current data points more accurately
reflect the price and trends of Bitcoin. The LSTMs generated here
should perform differently based on the hyperparameters each of
them receives before training and the data each of them receives.

Many different papers were reviewed that carry out an analysis
of the stock market. This analysis is primarily a price prediction but

25

https://doi.org/10.1145/3546157.3546162
https://doi.org/10.1145/3546157.3546162
https://doi.org/10.1145/3546157.3546162
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546157.3546162&domain=pdf&date_stamp=2022-08-22

ICISDM 2022, May 27–29, 2022, Silicon Valley, CA, USA Jordan Jones and Doga Demirel

can also develop a neural network-assisted trading strategy. These
papers highlight the importance of good data gathering and prepro-
cessing before being fed into the network. These data preprocessing
methods include normalization, attaching weights to the different
time series data points, or even transforming the data entirely into
something like binary values. Once preprocessing is done, most of
the common approaches feed the values into an LSTM. Most results
showed the power of LSTM by outperforming the popular ARIMA
model. The ARIMA model is a more traditional algorithm used to
predict time series data. Convolutional networks showed promise
here as well, so a hybrid approach is also valid.

Some models don’t do data preparation and preprocessing but
instead, let the network do most of the work. This paper by Murtaza
Roondiwala et al. [8] grabs the relevant technical indicators such as
volume, open, close, high, and low. After gathering this data, they
preprocess it by discretizing and normalizing it. Once the data is
in the correct form, it is fed into an LSTM. The results show that
the model predicts the overall structure of the data but appears to
be a couple of time steps off. The results also show that the model
is missing some rapid changes but instead averages those changes
out.

ARIMA is one of the first attempts at analyzing time series data.
The work done by S. Siami-Namini et al. [9] compares this model
to the recently created LSTM at time series forecasting. Each model
was fed the adjusted close value from the same stocks. Once evalu-
ated, the results showed that the error rate decreased by 87% why
using the LSTM. ARIMA was also compared against LSTM, RNN,
CNN, and MLP models in this study by S. Selvin et al. [10]. CNN
(Convolutional Neural Network) is a type of neural network that
uses convolutions to analyze the input. A MLP or multilayer per-
ceptron is a simple feed forward network consisting of an input
layer, output layer and a hidden layer. It was proved that LSTM
RNN CNN outperformed ARIMA. Among those three, CNN out-
performed LSTM and RNN. The LSTM and RNN models both had
points in each of the tests where their predictions had a signifi-
cant divergence from the trend of the real data. This shows that
CNNs can have a place in time series forecasting, and perhaps a
convolution layer should be applied to the LSTM.

The work done by J. Choi et al. [11] attempts to combine ten
different LSTMs. Each LSTM has a different sequence length of
data. Each LSTM makes its prediction and is combined to create
one combined prediction. The weights here are developed using
their own algorithm, which accounts for the different delays in the
time. The proposed method of an ensemble of varying LSTM net-
works proved to have the lowest error among the other ensemble
methods. These include least square regression, averaging, neu-
ral network-based linear ensemble, average sample weights, and
median.

An RNN was created to predict apple stock price upon opening
[12]. The RNN created achieved an accuracy of 95% with an error of
.1%. There were multiple tests run, and each RNN created has two
layers with either 50 or 100 units. The RNN was trained with either
5 or 10 timesteps of data. The lower timesteps 5 performed better
than the higher 10. This shows that you don’t need to look far into
the past to get good predictions. This indicates that different lags
are required to find the optimal.

The attention model will assign weights to the time series data to
help improve accuracy. Themodels use four weeks of information to
predict the next day’s closing price. After the weights are assigned
to the time series data, it is fed into the LSTM. The weights act as
ways for the model to value specific inputs as more critical and some
data points as less critical. This helps the LSTM learn because it
knows which values are important and which aren’t. Mean absolute
percentage error is used. The AT-LSTM is compared with LSTM and
ARIMA. Both LSTMs outperform the ARIMA easily. The AT-LSTM
has an improvement over strictly the LSTM. The AT-LSTM still
has trouble during some extreme conditions [13]. In the work done
by A. H. Manurung et al.[14], the models use the recent price data
from 1, 3, and 5 years to predict the next day’s value. This study
shows the increase in accuracy when increasing the epochs from
5 to 20. However, the best results are with 100 epochs. The Arima
model’s accuracy is only 56% compared to the 94.59% achieved by
the LSTM model. This study is more proof that the ARIMA model,
while effective, is getting outshined by newer LSTM models.

The inputs used in this model are "trading volume", "adjustment
close price", "profit margin", "diluted earnings per" share, "company
beta", "return of equity", "debt-to-equity ratio". the data was scaled
to values between 0 and 1 using the min-max scaler. ARIMA, LSTM,
stacked LSTM, and Attention LSTM are created in this study done
by Z. Zou et al [15]. The ARIMAmodel was used using the "adjusted
close price." The LSTM model is created with one layer, while the
stackedmodel is more complicated. TheAttention LSTM is an LSTM
where the inputs have weights attached to them. This will allow
the model to value data differently based on its importance before
the LSTM is run. The models here predict the value on the next
day. On top of the models created to predict the price, two different
trading strategies are created: a long-short strategy and a long-only
strategy. The long-only strategy means if the stock is projected to
increase in price, it is bought when the market opens and sold at
close. If the projection is the price will decrease, no buying or selling
is done. For the long-short strategy, the same is done if the price
is projected to increase, but if the price is projected to decrease,
the stock is short sold upon the opening of the market, and when
the market closes out, the short-sell is then closed out. The TANH
function is used for activation, and the activation function sigmoid
is used in the output layers. Smaller lookback days were proven to
be more effective than longer lookback days, so 20 is used here.

To increase the model’s efficiency, a batch size of 30 is used.
The Stacked LSTM model did not outperform the LSTM model.
This shows that you do not need to add layers to make a neural
network more effective. The LSTM and attention-based LSTM were
used in the trading strategy and compared vs. the SAP 500 annual
return. Both LSTM networks did substantially better. The Attention
LSTM was the most superior out of the LSTM models, proving that
the attention portion helps the LSTM model capture more drastic
changes [15].

The RNN was created to predict the opening price using the
previous 12 days. The RNN was trained on a small sample size
of only 156 points. The prediction accuracy of the network has a
percent error of 5%. This work shows that you do not need a large
dataset to predict trends in a time series dataset [16].

26

Long Short-Term Memory for Bitcoin Price Prediction ICISDM 2022, May 27–29, 2022, Silicon Valley, CA, USA

Figure 1: Diagram of LSTM

2 METHODOLOGY
The approach for predicting time series data here can be broken
down into three different steps. The three steps are data collection,
data preparation, and network training. 1) Data collection. An ample
amount of data is required for an LSTM to be effective at time series
prediction. Therefore, LSTM can have enough data to test on and
pick up the patterns in the time-series data. 2) Data preparation.
The data should be prepared in batches of input and output. Along
with the preparation, the data is scaled down to 0-1s so the LSTM
can accurately train on them. 3) Creation and training of the LSTM.
An LSTM is chosen because it’s a type of RNN that solves the
vanishing gradient problem by adding a forget gate. The LSTM is
composed of three different gates, an input gate, an output gate,
and a forget gate as shown in Figure 1. Each of the three different
gates is responsible for specific tasks, and each gate has a formula
for how the values are updated [17] [18].
The forget gate’s main responsibility is making sure old information
isn’t lost over time by deciding which information should be taken
from the previous runs. The forget gate takes both the current input
and the value from the previous hidden state. The hidden state can
be viewed as the short-term memory of the LSTM. The forget gate
takes four inputs and applies a sigmoid activation function. The
weight associated with the forget gate Uf, the current input at time t
(Xt), The hidden state at t-1 (Ht-1), and lastly, the weights associated
with the hidden state for the forget gateWf.

Ft = σ (W f ∗ Ht − 1 +U f ∗ Xt)

The input gate is responsible for handling the input from the dataset.
The input gate’s main task is to decide how to update the values.
The input gate has four inputs and a sigmoid activation function.
The input gate takes the current input at time t (Xt), the weights
associated with the input Ui, and the ones dealing with the hidden
state Wi. lastly, the value at the previous time step Ht-1. The full
function for the input gate is:

It = σ (Wi ∗ Ht − 1 +Ui ∗ Xt)

The value Ct is calculated here. This value is used when updating
the cell state. The cell state can be thought of as the long-term

memory of the LSTM. The value is calculated by:

C̄t = tanh(Wc ∗ Ht − 1 +Uc ∗ Xt)

The following function calculates the value of the cell state.

Ct = Ct − 1 ∗ f t + C̄t ∗ it

Here the forget gate performs its task and is responsible for how
much of the previous state we should remember. The input gate I
affect how much of C should affect the current state. The output
gate is responsible for calculating the value of the hidden state at
the next time step. The output gate takes the hidden state Ht-1 and
current input Xt. The equation for the output gate is:

Ot = σ (Wo ∗ Ht − 1 +Uo ∗ Xt)

The new hidden state value uses this new Ot value and Ct’s current
state value.

Ht = tanh (Ct) ∗Ot

The output can be received at the given timestep by applying a
softmax function to this hidden state value

Outt = so f tmax(Ht)

The system we used was Windows 10 version 20H2 64-bit machine.
AMD Ryzen 7 3700x 8-core processor (16 CPUs ∼3.6ghz minimum
speed). 16gbs of RAM. Nvidia GeForce RTX 3080 TI for the graphics
card.

2.1 Model Evaluation
The accuracy here is evaluated in 2 different ways, Mean Absolute
Percentage Error (MAPE) and RMSE. Both MAPE and RMSE are
common formulas for assessing the efficiency of a forecastingmodel.
MAPE stands for mean squared percent error. The MAPE provides
the prediction error as a percentage, thus allowing you to compare
models with different data sets. The percentage from the MAPE
equation is how far off your prediction is from the real value. The
value for MAPE is calculated by the below formula [19].

1
n

n∑
x=1

����realx − predictedx
realx

����
Where real is the real value, predicted is the predicted value. The
formula goes from 1 to n, where n is the length of the test set. This
value provides the error in a percentage form

The RMSE Root Mean Squared Error is done by taking the sum of
the squared difference between the real value and predicted value.
This will produce the MSE. To get the RMSE you take the square
root of this. [20]. √√ n∑

x=1

(realx − predictedx)
2

n

2.1.1 Step 1: Data Collection. Bitcoin market price is the primary
data used for this LSTM. The market price is rapidly changing,
so values are acquired daily. The website data.nasdaq.com has a
collection of various datasets on there published by different teams
from different datasets. For this study, the Bitcoin dataset from
blockchain.com was used. This dataset was published by Quandl, a
team of data scientists that scrape numerous data sets and allows
the public to use them for free. There are multiple ways to access
Quandl datasets, and the Python API was used for this project.

27

ICISDM 2022, May 27–29, 2022, Silicon Valley, CA, USA Jordan Jones and Doga Demirel

Multiple different data sets were imported, and as a future work
of this project, various data combinations can be used. The data is
imported in either a pandas Dataframe format or a Numpy format.
Both different forms were used in this approach.

2.1.2 Step 2: Data Preparation. We only use the most accurate
and relevant data points for the data to be prepped effectively.
Once the data is imported from the Quandl library, several different
data preparations and methods are used. The main problem with
the dataset acquired from Quandl is the price is minuscule at the
beginning, and there is a period where the price is so low it only
registers 0 on the dataset. A simple method is created to pull only
the relevant data. This method iterates through the data and figures
out the first non-zero entry (around 590 data points). This means
the first few data points can confidently be ignored as they will
provide no use to the network. Another thing is because of the
nature of Bitcoin and its rise in popularity, the trends, and patterns
Bitcoin follows will change drastically over time. For this reason,
datasets of varying lengths are used. The optimal range of data
is ignoring the first 2500+ data points. Different configurations of
dataset lengths are tested to determine the correct starting point.
The data is normalized here to values between 0 and 1. This is to
increase the accuracy of the LSTM. After the length of the dataset
is determined, the data is then split into a training set and a testing
set. This ensures that the LSTM has not been trained on the same
data it is being tested on. This is because the LSTM would already
have the answer in this case. An 80/20 split is done here to ensure
enough data to train on and enough to get an accurate prediction.
The number of lags (days in the past) is set at 10. This means the
LSTM will look ten days into the past when making a prediction.

The trainx values consist of the price at the previous days such
that trainxt ∈ {pricet-1, pricet- 2. . . pricet-timePeriod}. Where timePeriod
is 10. These trainy value is simply the price at the current day such
that trainyt = pricet. This method is run twice, once for the training
dataset and a second time for the testing dataset. Once the data has
been preprocessed, it is fed into the LSTM.

2.1.3 LSTM.. The LSTM is created with a single dense layer at
the end. The LSTM has 100 neurons. The loss is calculated with
mean_squared_error, and ADAM is used as the optimizer. The in-
put for the LSTM is a tuple of shape (1, timePeriod, nFeatures). This
iteration only uses one feature, so nFeatures is one, and timePe-
riod is set to 10. The LSTM has different hyperparameters such as
epochs and batch size. Epochs are how many times the LSTM is
run. The batch size is how much data will be used in training. A
batch size of 1 will use all of the data. Different configurations of
these hyperparameters are tested. At intervals such that epochs ∈
{10, 20. . ..70} epochs are used as well as batch sizes of powers of 2.
batchSize ∈ {20, 21. . .26}. This, along with different amounts of data,
is used to determine the effect each has on the network and figure
out which is the most accurate. Data length ranges varied from
1882-1658, decreasing by a value of 25 each iteration of testing. The
LSTM will look at the previous timePeroid (10) values and use these
values to predict the price of Bitcoin on the following day. This is
run, and the model then predicts the testing dataset 1 data point
at a time. The results are stored and compared against the actual
results. The Root Mean Squared Error is recorded for each run and
stored inside a CSV file. The models are all saved. Thus, the results

can be reproduced. The goal is to find the models with the high-
est accuracy. The configurations of these models are what we are
most interested in. The models with very low accuracy can also be
observed and figuring out a trend of configuring hyperparameters
and datapoints causes a model to fail. These combinations can be
observed and used to see what hyperparameters to avoid.

3 RESULTS
The model was run 490 times with ten different data configurations,
seven different batch sizes, and seven different number of epochs.
The results showed promise with a batch size of 16. This provided
the models with good stability and Efficiency. It appeared that the
less amount of data used provided more accurate results. 6 results
are shown in Table 1 to analyze the different effects of Batch Size,
Epochs, and data lengths. The best result can be seen in Figure 2
(a), with a configuration of 16 for the batch size, 50 for epochs, a
training length of 1432, and a testing length of 351. A few other
runs of interest were included in the table showing the effect of
different configurations. The high values for RMSE are because
RMSE is relative, and the scale of data used here is $20,000-$65,000.

Figure 2 (a) shows the model with the highest accuracy. The
RMSE was 1892.87. This high RMSE number is due to the data in
the test set ranging from $20,000 up to $65,000s. The model here
had the Batch Size = 16, Epochs = 50, Training length = 1432, Test
length = 351. The model can follow the trends but has trouble when
the values fluctuate at a high rate. This volatility is a quality of
Bitcoin that must be accounted for. In Figure 2 (b), the effect of
different numbers of epochs can be observed. This model has the
same hyperparameters as Figure 2 (a) but had epochs = 10. This
caused the model to pick up the general trend but not accurately
predict the sudden changes. The number of epochs means that the
model only trained for ten iterations. This limited training time
caused the model to understand how the price would move in a
general sense but couldn’t pick up on the volatility of bitcoin at
price points.

A model with a batch size of 1 was found to have the most
fluctuations in the results. As seen in Figure 2 (c), the model has
accurate results with an RMSE of 2055. The model was able to
follow the trends and only had some problems when dealing with
data peaks. These results show a good model, but the model runs
into some problems when increasing the epochs to 70. The results
when the hyperparameters were set as: Batch Size = 1, Epochs =
50, Training length = 1492, Test length = 366. The model in Figure
3 (a) had the same hyperparameters as Figure 2 (c), but the epochs
were increased to 70. This shows the volatility with a batch size
of 1. Again, this model can follow some of the trends, but when
reaching data peaks, the model overestimates the price. This can
be very bad as if you were an investor, you would see these price
points and think to invest beforehand.

The data fed into the network can be observed with these two dif-
ferent examples. The hyperparameters are Batch Size = 16, Epochs
= 50, Training length = 1511, Test length = 371. The difference in
the amount of data being fed to each network is 224, but the results
change the RMSE from 2797.98 in Figure 3 (b) to 1965.3 in Figure 3
(c). Figure 3 (c) has, Training length = 1332, Test length = 326. This
shows that more data does not always mean a more accurate result.

28

Long Short-Term Memory for Bitcoin Price Prediction ICISDM 2022, May 27–29, 2022, Silicon Valley, CA, USA

Table 1: List of Results

Batch Size Epochs Train Length Test Length RMSE MAPE Corresponding
Figure

16 50 1432 351 1892.87 3.23% Figure 2 (a)
16 10 1432 351 2653.6 4.78% Figure 2 (b)
1 50 1492 366 2055.22 3.47% Figure 2 (c)
1 70 1492 366 6205.67 7.9% Figure 3 (a)
16 50 1511 371 2797.98 4.88% Figure 3 (b)
16 50 1332 326 1965.31 3.31% Figure 3 (c)

Figure 2: (a) Model with Batch Size = 16, Epochs = 50, Training length = 1432, Test length = 366, (b): Model with Batch Size =
16, Epochs = 10, Training length = 1432, Test length = 351, (c): Model with Batch Size = 1, Epochs = 50, Training length = 1492,
Test length = 366.

Figure 3: (a) Model with Batch Size = 1, Epochs = 70, Training length = 1492, Test length = 366, (b) Model with Batch size = 16,
Epochs = 50, Training length = 1511, Test length = 371, (c): Model with Batch size = 16, Epochs = 50, Training length = 1332,
Test length = 326.

With trends changing all the time, the most recent data will be the
most accurate. This will require users to be more diligent when
selecting the amount of data to use. The results here showed that
it is difficult to train a model to predict the price accurately with
bitcoin’s volatility. The models trained here perform differently
when presented with different data and hyperparameters. An opti-
mal batch size of 16 was observed to have the most accurate and
most stable results. Fifty epochs were observed to be the optimal
number for the models. Too little, and the model wouldn’t have
enough time to train and thus wouldn’t be as accurate. Too many
and the model would overfit and not produce accurate results when

presented with the test data. As initially thought, less data is better
for this type of experiment. With bitcoin reaching new territory
and all-time high price points, it is important to only train on the
most recent data. The trends of previous data points are not the
same as the most recent ones.

4 CONCLUSION
The world of predicting the stock market has been researched
heavily with a vast array of different approaches. This research
has not been translated to the cryptocurrency market yet. The
LSTMs generate models with high accuracy (RMSE of 1900 with

29

ICISDM 2022, May 27–29, 2022, Silicon Valley, CA, USA Jordan Jones and Doga Demirel

data ranging from $20,000 to $60,000). These models are trained
only on the previous price of Bitcoin, with only looking at the
previous ten prices. The models generated have a wide variety of
hyperparameters used. These different hypermeters show which
variables affect accuracy the most and introduce variance into the
models. Different ranges of data also showed how those could affect
the results. The approach here showed transferability between the
stock market and Bitcoin when it comes to price prediction. With
the effects of different hyperparameters and data lengths explored,
they offer a good foundation for the future development of LSTMs.

REFERENCES
[1] “Algorithmic Trading Market | 2021 - 26 | Industry Share, Size, Growth - Mordor

Intelligence.” https://www.mordorintelligence.com/industry-reports/algorithmic-
trading- market (accessed Nov. 22, 2021).

[2] “Definition of TIME SERIES.” https://www.merriam-webster.com/dictionary/
time+series (accessed Nov. 22, 2021).

[3] “7 Companies Where You Can Pay With Crypto,” The Motley Fool, Oct. 05,
2021. https://www.fool.com/the-ascent/cryptocurrency/articles/7-companies-
where-you-can-pay- with-crypto/ (accessed Nov. 22, 2021).

[4] “Bitcoin price history 2013-2021,” Statista. https://www.statista.com/statistics/
326707/bitcoin-price-index/ (accessed Nov. 22, 2021).

[5] R. Molla, “Elon Musk says Tesla will once again accept bitcoin,” Vox, May
18, 2021. https://www.vox.com/recode/2021/5/18/22441831/elon-musk-bitcoin-
dogecoin-crypto- prices-tesla (accessed Nov. 24, 2021).

[6] R. Browne, “Bitcoin and ether slide as China intensifies crackdown on cryp-
tocurrencies,” CNBC, Sep. 24, 2021. https://www.cnbc.com/2021/09/24/bitcoin-
ethereum-sink-as-china- intensifies-crypto-crackdown.html (accessed Nov. 24,
2021).

[7] “Indian government set to ban cryptocurrencies,” BBC News, Nov. 24, 2021.
Accessed: Nov. 24, 2021. [Online]. Available: https://www.bbc.com/news/
technology-59402310

[8] M. Roondiwala, H. Patel, and S. Varma, “Predicting Stock Prices Using LSTM,”
vol. 6, no. 4, p. 4, 2015.

[9] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and
LSTM in Forecasting Time Series,” in 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), Orlando, FL, Dec. 2018, pp.
1394–1401. doi: 10.1109/ICMLA.2018.00227.

[10] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. So-
man, “Stock price prediction using LSTM, RNN and CNN-sliding window
model,” in 2017 International Conference on Advances in Computing, Com-
munications and Informatics (ICACCI), Udupi, Sep. 2017, pp. 1643–1647. doi:
10.1109/ICACCI.2017.8126078.

[11] J. Choi and B. Lee, “Combining LSTM Network Ensemble via Adaptive Weighting
for Improved Time Series Forecasting,” Mathematical Problems in Engineering,
vol. 2018, pp. 1–8, Aug. 2018, doi: 10.1155/2018/2470171.

[12] Y. Zhu, “Stock price prediction using the RNN model,” J. Phys.: Conf. Ser., vol.
1650, p. 032103, Oct. 2020, doi: 10.1088/1742-6596/1650/3/032103.

[13] X. Zhang, X. Liang, A. Zhiyuli, S. Zhang, R. Xu, and B. Wu, “AT-LSTM: An
Attention- based LSTM Model for Financial Time Series Prediction,” IOP Conf.
Ser.: Mater. Sci. Eng., vol. 569, no. 5, p. 052037, Jul. 2019, doi: 10.1088/1757-
899X/569/5/052037.

[14] A. H. Manurung, W. Budiharto, and H. Prabowo, “Algorithm and Modeling of
Stock Prices Forecasting Based on Long Short-Term Memory (LSTM).” ICIC
International 学会, 2018. Accessed: Nov. 22, 2021. [Online]. Available: https:
//doi.org/10.24507/icicel.12.12.1277

[15] Z. Zou and Z. Qu, “Using LSTM in Stock prediction and Quantitative Trading,” p.
6.

[16] I. Jahan and S. Sajal, “Stock Price Prediction using Recurrent Neural Network
(RNN) Algorithm on Time-Series Data,” p. 6.

[17] “LSTM | Introduction to LSTM | Long Short Term Memor,” Analytics Vidhya, Mar.
16, 2021. https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-
short-term- memory-lstm/ (accessed Nov. 22, 2021).

[18] M. S. (Mady), “Chapter 10.1: DeepNLP — LSTM (Long Short Term
Memory) Networks with Math.,” Deep Math Machine learning.ai, Jan.
21, 2018. https://medium.com/deep-math-machine-learning-ai/chapter-10-1-
deepnlp-lstm-long-short- term-memory-networks-with-math-21477f8e4235 (ac-
cessed Nov. 22, 2021).

[19] M. Riva, “Understanding Forecast Accuracy: MAPE, WAPE, WMAPE | Baeldung
on Computer Science,” Sep. 12, 2020. https://www.baeldung.com/cs/mape-vs-
wape-vs-wmape (accessed Nov. 28, 2021).

[20] “RMSE: Root Mean Square Error,” Statistics How To. https://www.statisticshowto.
com/probability-and-statistics/regression-analysis/rmse-root- mean-square-
error/ (accessed Nov. 28, 2021).

30

https://www.mordorintelligence.com/industry-reports/algorithmic-trading-
https://www.mordorintelligence.com/industry-reports/algorithmic-trading-
https://www.merriam-webster.com/dictionary/time+series
https://www.merriam-webster.com/dictionary/time+series
https://www.fool.com/the-ascent/cryptocurrency/articles/7-companies-where-you-can-pay-
https://www.fool.com/the-ascent/cryptocurrency/articles/7-companies-where-you-can-pay-
https://www.statista.com/statistics/326707/bitcoin-price-index/
https://www.statista.com/statistics/326707/bitcoin-price-index/
https://www.vox.com/recode/2021/5/18/22441831/elon-musk-bitcoin-dogecoin-crypto-
https://www.vox.com/recode/2021/5/18/22441831/elon-musk-bitcoin-dogecoin-crypto-
https://www.cnbc.com/2021/09/24/bitcoin-ethereum-sink-as-china-
https://www.cnbc.com/2021/09/24/bitcoin-ethereum-sink-as-china-
https://www.bbc.com/news/technology-59402310
https://www.bbc.com/news/technology-59402310
https://doi.org/10.24507/icicel.12.12.1277
https://doi.org/10.24507/icicel.12.12.1277
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-
https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-
https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-
https://www.baeldung.com/cs/mape-vs-wape-vs-wmape
https://www.baeldung.com/cs/mape-vs-wape-vs-wmape
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-

	Abstract
	1 INTRODUCTION
	2 METHODOLOGY
	2.1 Model Evaluation

	3 RESULTS
	4 CONCLUSION
	References

