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Abstract. Virtual reality (VR) can bring numerous benefits to the learning pro-
cess. Combining a VR environment with physiological sensors can be beneficial 
in skill assessment. We aim to investigate trainees' physiological (ECG) and be-
havioral differences during the virtual reality-based surgical training environ-
ment. Our finding showed a significant association between the VR-Score and 
all participants' total NASA-TLX workload score. The extent of the NASA-TLX 
workload score was negatively correlated with VR-Score (R2 =0.15, P < 0.03). 
In time-domain ECG analysis, we found that RMSSD (R2 =0.16, P < 0.05) and 
pNN50 (R2 =0.15, P < 0.05) scores correlated with significantly higher VR-score 
of all participants.  In this study, we used SVM (linear kernel) and Logistic Re-
gression classification techniques to classify the participants as gamers and non-
gamers using data from VR headsets. Both SVM and Logistic Regression accu-
rately classified the participants as gamers and non-gamers with 83% accuracy. 
For both SVM and Linear Regression, precision was noted as 88%, recall as 83%, 
and f1-score as 83%. There is increasing interest in characterizing trainees' phys-
iological and behavioral activity profiles in a VR environment, aiming to develop 
better training and assessment methodologies.   
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1 Introduction  

Virtual Reality (VR) is becoming a more widely used teaching and learning aid in 
several fields, such as medical training and robotics. Conventional training methods are 
hard to grasp, non-reusable, non-repeatable, and costly. VR allows students and teach-
ers to interact in a real-time learning environment, which would be nearly impossible 

mailto:ddemirel@floridapoly.edu
mailto:ddemirel@floridapoly.edu
mailto:hokeles@ankara.edu.tr
mailto:cmodak9952@floridapoly.edu
mailto:kubranur.kara@tootech.com.tr
mailto:jbarker@floridapoly.edu


2 

to do in the physical world. Trainees face trouble obtaining skills in this unnatural en-
vironment. Training with VR simulators established benefits, however, methods for 
skill assessment in VR, particularly in real-time, are still undeveloped and unknown. 
Virtual reality simulators are computer-based systems that generate output data, which 
is very helpful for skill assessment [1, 2]. 

 
In general, skill assessment approaches can be found in technical, non-technical, and 

mental workload assessments. For mental workload assessment, questionnaires and 
physiological measurements can be useful tools, and for non-technical skill assessment, 
all methods (questionnaires, expert-rating and physiological measurement) can be uti-
lized [3]. In critical fields such as surgical education and healthcare, learning is based 
on an apprenticeship model [4]. In this model, the proficiency assessment is the respon-
sibility of the trainers. However, their assessment is subjective. Objective assessment is 
essential because performance in training and performance are difficult to correct with-
out objective feedback. Psychophysiological measures allow a more objective assess-
ment and can provide an uninterrupted evaluation [5]. 
 

Technological advances in wearable sensor technology make objective assessment 
less intrusive and capable of delivering continuous, multimodal information. Electro-
encephalogram (EEG) and Electrocardiogram (ECG), including Heart Rate (HR), Heart 
Rate Variability (HRV), have also been correlated with NASA-TLX scores as well as 
task complexity, performance and expertise in surgery [5, 6]. Studies also indicate that 
such descriptors correlate with the overt performance of human operators [7]. For ex-
ample, mental workload gauged by a standard self-reporting tool was proportional to 
the rate of errors committed and suture quality in laparoscopic surgery training [8]. 
However, efforts to characterize mental status descriptors and their effect on individual 
and team performance face a significant challenge: the descriptors are not directly ob-
servable. To quantify them, researchers traditionally resort to physiological variables 
(e.g., ECG, EEG, skin conductance), behavioral indicators (e.g., secondary task perfor-
mance), or survey results (e.g., NASA-TLX questionnaire). Few studies focused on 
combining VR environments and physiological sensors during training approach [9, 10, 
11, 12].  
 

Previous gaming experience helps get accommodated to this training environment 
faster, increases visual attention capacity, and makes multitasking easier. Thus, it helps 
the trainees to facilitate these obstacles and acquire skills more quickly. Video gamers 
and surgeons have similarities in skill acquisition [13, 14]. Video gamers have superior 
eye-hand coordination, faster reaction times, superior spatial visualization skills, and a 
high capacity for visual attention and spatial distribution. Both laparoscopic surgery 
and computer games require eye-hand coordination, visuospatial cognitive ability, at-
tention, and perception skills. Individuals who interact or play video games tend to have 
better visuospatial ability when compared to non-gamers [15,16]. 

 
Grantcharov et al. [17] demonstrated the effect of video game experience on the 

MIST-VR® surgical simulator and found that surgeons with previous video game 
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experience made significantly fewer errors than non-gamers. Therefore, this project 
aims to assess how the gaming experience gives advantages to the new trainees and 
makes the learning process more accessible on the VR-based surgical training plat-
forms. Demand for the safety of patients has prompted the need for efficient and afford-
able training for preparing surgeons. Several VR-based simulators have recently been 
developed to fulfill this need, and VR applications, simulation, and e-learning have 
improved the learning metrics [18]. Conventional human and animal models, cadavers, 
and mannequin-based training for surgeons can be risky, non-reusable, subjective, and 
expensive. VR-based simulators measure several characteristics or metrics for objec-
tively assessing the trainee’s performance. 

 
According to Enochsson et al. [19], video game players were more efficient and 

faster than non-gamers performing the simulated colonoscopy. There were also no gen-
der-specific differences in performance. Jalink et al. [20] suggested that video games 
could be used to train surgical residents in laparoscopic skills. Based on these findings, 
one might expect that gaming will facilitate and improve the training of novice surgeons 
where the performance requires a firm reliance on spatial orientation and the recogni-
tion of various visual inputs. 
 

We aim to investigate trainees' physiological and behavioral differences during the 
virtual reality-based surgical training environment. This paper shows multimodal in-
formation collected from a VR+ECG system for skill assessment during a surgical 
training game. We hypothesize that multimodal information can lead to a more accurate 
assessment than single modality-based measurement approaches. In addition, we also 
showed how the game experience could affect performance and behavioral measures 
(task load).  To our knowledge, the studies to date which investigated these links ex-
clusively utilized overt performance and behavioral measures. However, given the 
complexity of skill assessment, multimodal approaches are required. 
 

2 Methods 

2.1 Participants 

Our dataset consisted of 30 participants with varying levels of gaming experience 
(from 0 to 60 hours per week). It was subsequently divided into two groups according 
to their previous gaming experience as gamers and non-gamers. The Research Ethics 
Board of Ankara University approved this study (2021/435), which was performed in 
agreement with the Declaration of Helsinki. All participants signed informed consent 
and could withdraw from the study at any time. 

2.2 Study Design  

For this experiment, we created a simple VR environment where the users were 
asked to bounce a balloon and keep it in a proper range while in the air. To achieve a 
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high score in this environment, the trainee must keep the balloon between the planes 
while bouncing for as long as possible with fewer impacts while causing no damage to 
the balloon. A VR score is calculated by the amount of time between the planes. This 
environment assesses the gentleness of a surgeon [21]. We used a Meta Quest 2 as the 
VR headset.  
 

The participants were given two minutes to get accommodated with the scene (rest-
ing state), and then the next three minutes were used to capture data. In this study, we 
recorded physiological signals such as ECG while using a VR device. After subjects 
completed the training in VR headsets, they completed the NASA task load index 
(NASA-TLX) questionnaire. Nasa-TLX is a multidimensional rating scale that pro-
vides an overall index of mental workload and the relative contributions of six sub-
scales: mental, physical, and temporal task demands: effort, frustration, and perceived 
performance.  VR-Score, jerk, velocity, and acceleration were recorded for all partici-
pants using a VR headset. RMSSD, pNN50, and pNN20 were used for heart rate vari-
ability (HRV) analysis.  

 
 

 
Fig. 1.  (a) VR-ECG Setup and (b) VR Racket Game  

2.3 Physiological signal recording and processing 

The ECG data were obtained through the ExG Explorer device (wearable wireless) 
(Mentalab, Germany). One channel was recorded by placing the electrodes on the des-
ignated body locations. Raw ECG signals were digitalized with a sampling rate of 250 
Hz and filtered by a low pass Gaussian filter with a cut-off frequency of 40 Hz, while 
IIR Zero-Phase Filter was used to attenuate baseline wander with a cutoff frequency of 
0.5 Hz.  Time domain analysis was used to process the preprocessed ECG signals. The 
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HRV time domain parameters (RMSSD, pNN 50, and pNN 20) were chosen in the 
current study as the assumed assessment indicators for the later analysis.  

2.4 Statistical Analysis 

When conducting a regression analysis comparing two numerical variables, linear 
fit with analysis of variance was used. The descriptive results comparing two groups, 
NASA-TLX, and total VR score, contained non-paired data. To assess the statistical 
significance of the difference between two groups of non-paired results, we used the 
non-parametric Kolmogorov test. We did not utilize null hypotheses whose rejection 
would have required corrections for multiple comparisons or false discovery. The sta-
tistical significance of the results were interpreted based on p values, and p< 0.05 was 
set as the level of statistical significance. 

3 Result 

3.1 VR Results 

According to our results, gamers had an average VR score of 3581.86, over two 
times higher than non-gamers average VR score of 1748.8. The time gamers kept the 
balloon between the planes (66.36) is almost two times higher than the non-gamers 
(34.96). Also, gamers popped the balloon times above the top plane (24.21) was signif-
icantly higher than the non-gamers (12.8). The mean jerk was 40.9%, the mean accel-
eration was 29.1%, and the mean velocity was 7% more in non-gamers than gamers. 
While for mean path length, gamers had 7.1% more than non-gamers. For standard 
deviation results, gamers had a lower standard deviation in path length (7.6%), velocity 
(30.1%), acceleration (27.8%), and jerk (23.6%). These findings indicate that gamer’s 
hand and spatial movement were gentler, with a minor standard deviation, than non-
players. 

The results of the features of the compared groups are illustrated in Figure 2. The 
gamer’s hand position (Figure 2a) and path length (Figure 2b) while moving the tennis 
racket are more scattered than the non-gamers. Figure 2b also shows that gamers had a 
longer mean path length showing that they were more decisive and knew what they 
were doing. This finding implies gamer has better hand-eye coordination as they per-
form better and produce better result than non-gamers. However, from Figure 2c, we 
can see that non-gamers had more velocity meaning that gamers used more positive 
force. As gamers have less acceleration (Figure 2d) and jerk (Figure 2e), their move-
ment is more stable than the non-gamers. 
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Fig. 2. (a) Mean Position, (b) Mean Path Length, (c) Mean Velocity, (d) Mean Acceleration, 

and (e) Mean Jerk box plots comparing Gamer and Non-gamer results. 

 

3.2 Clustering Results 

After selecting the features from the data set, we used multiple metrics to measure 
the difference between the data groups. We used the Davies Bouldin score, Silhouette 
Score, and the Mutual Information Index metrics with the K-Means, Mean Shift, and 
Spectral Clustering algorithms for clustering. We got the optimum score at the number 
of clusters (n) = 2. Figure 3 shows the graphs for the metrics score of the clustering 
algorithms. Normalizing the data, other better results over Spectral Clustering and 
Mean Shift algorithm. Though there are variations in the results, Mean-Shift performed 
the best, achieving an 80% success rate in classifying the users based on their previous 
gaming experience. However, since the range of data is smaller, the Mutual Information 
Index dropped in almost all instances. 
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Fig. 3. Clustering Results according to the gaming experience 

 

3.3 Classification Results 

After the clustering, we passed the data through classification algorithms such as 
Logistic Regression and Support Vector Machine with linear kernels. We looked at 
those classification algorithms' precision, recall, F1 score, and average accuracy. We 
normalized the data the same way as above and obtained massive improvements in the 
Logistic regression algorithm. We could classify the performance between the gamers 
and non-gamers at best 83% of the time. 

Table 1. Classification results according to the gaming experience 

Algorithms Precision Recall F1 Score 
Logistic Regression 80% 67% 62% 
SVM Linear 88% 83% 83% 
AdaBoost 88% 83% 83% 

 
 
Table 1 lists the Precision, Recall, and F1 Scores of different classification algo-

rithms. We achieved at best, 88% of the average score for those algorithms. The distri-
bution of the observed values is displayed more clearly in Figure 4. We predicted that 
the gamers would perform than the participants with no gaming experience, and in the 
case of all classification algorithms, the True Positive (TP) is significantly higher. Lo-
gistic regression successfully classified gamers with 82% accuracy and non-gamers 
with 86% accuracy (Figure 4a). Logistic regression successfully classified gamers with 
82% accuracy and non-gamers with 86% accuracy. Figure 4b shows SVM Linear clas-
sified gamers with 91% accuracy and non-gamers with 86% accuracy. Adaboost Clas-
sifier classified both gamers and non-gamers with 100% accuracy (Figure 4c) 
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Fig. 4. Confusion matrix for (a) Logistic Regression, (b) SVM Linear Kernel, and (c) AdaBoost 

classifier 

 

3.4 Behavioral and Physiological Results 

We present the behavioral and subjective metrics and physiological measurement 
(ECG) of non-gamer and gamers, measured while performing virtual training tasks us-
ing a VR headset. Thirty participants (mean age 23.25 ± 8.5 years) were enrolled in the 
study. The participants' experience with gaming varies. Fifteen participants have no 
experience with gaming. The rest of the participants have an experience with gaming 
(mean: 12.4 hours per week± 11.4 years). 

 
Figure 5a shows that gamers have greater VR scores when compared to non-gamers. 

A significant difference in VR Score was noted between gamers and non-gamers (P < 
0.05), confirming the difference between the two groups. Figure 5b, through regression 
analysis, we found a significant association between the VR score and Nasa-TLX total 
score for all participants. The extent of the Nasa-TLX score (MW) was negatively cor-
related with the VR performance score (R2 = 0.14, P < 0.05). Although gamers have a 
higher Nasa-TLX score, the difference between gamers and non-gamers did not reach 
significance during the racket game.  
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Fig. 5. (a)VR Performance of non-gamer students (gray, circle indicates the median) vs. gamer 
students (black). Error bars indicate sample standard deviations (*p<0.05; **p< 0.01). (b) Nasa- 
TLX Total Score vs. VR Score 

In time-domain ECG analysis, we found that RMSSD (R2 =0.16, P < 0.05) and 
pNN50 (R2 =0.15, P < 0.05) scores correlated with significantly higher VR-score of all 
participants (Figure 6). There were similar trends for pNN20, although group differ-
ences were not statistically significant.  

 

Fig. 6.  (a) VR score vs RMSSD (R2 = 0.14 P<0.05). (b) VR Score vs PNN50 (R2 = 0.16 P<0.05).   
In the scatter plots, the solid black lines indicate the linear best fit to the data points, and the 
dotted lines indicate the 95% confidence interval. 

4 Discussion  

 
Our main results suggest a relationship between VR performance scores and the 

ECG time domain parameters of trainees. To our knowledge, this is the first study that 
includes physiological and performance metrics (multimodal approach) during a VR 
environment using a VR headset. Time-domain approach for ECG has been widely 
used to investigate the cardiovascular outcome of mental work. Several studies showed 
that mental workload leads to a decrease in the time domain measure of ECG [22, 23]. 
This supposes a predominant increase in sympathetic activity or a predominant de-
crease in para sympathetic activity [24, 25].  

 
Our results showed a significant negative correlation between cognitive load and 

gaming experience in all participants. This outcome is important because previous re-
search has demonstrated that scores from NASA-TLX can accurately predict future 
performance [6, 26]. Furthermore, playing VR games that have high levels of cognitive 
demand may result in being easily distracted, having limited options to consider, or 
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being rigid in selecting strategies. On the other hand, a low load allows greater amounts 
of data to be processed, leading to appropriate responses to unexpected events [27]. 
 

There were some key limitations to our study which should be mentioned. Our study 
had a low number of participants. A higher number of participants would allow us to 
show the significance of some of the trends observed. The measurement of video game 
experience may not be entirely accurate due to self-reporting approach.    

5 Conclusion  

There is increasing interest in characterizing trainees' physiological and behavioral 
activity profiles in a VR environment, aiming to develop better training and assessment 
methodologies. We evaluated the benefits of gaming for the new trainees and how it 
improves learning accessibility on VR-based surgical gentleness training platforms. We 
conducted investigations involving human subjects primarily to establish content and 
construct validations. We used different kinematics data, such as position, path length, 
acceleration, jerk, and velocity, collected from the subject’s interactions with the virtual 
reality environment. The dataset for this project consisted of 30 participants, who were 
then divided into groups based on their prior gaming experience. We depicted that 
gamer’s hand and spatial movement were gentler, with a minor standard deviation, than 
non-players. Then, we distinguished between gamers and non-gamers by utilizing a 
variety of clustering and classification algorithms. We applied clustering algorithms 
such as K-means, Mean-shift, and Spectral Clustering to verify the difference between 
the data. Though there are variations in the results, Mean-Shift performed the best, 
achieving over an 80% success rate in classifying the users based on their previous 
gaming experience. Using Logistic Regression, Support Vector Machine (SVM), and 
AdaBoost classifier, we were able to classify over 80% of the performance between the 
gamers and non-gamers and achieved 88% accuracy at best. Gamer’s subjective per-
formance and situation awareness correlated more positively with task performance 
than the non-gamers. 
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