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Abstract— Endoscopy is widely employed for diagnostic 

examination of the interior of organs and body cavities and 
numerous surgical interventions. Still, the inability to correlate 
individual 2D images with 3D organ morphology limits its 
applications, especially in intra-operative planning and 
navigation, disease physiology, cancer surveillance, etc. As a 
result, most endoscopy videos, which carry enormous data 
potential, are used only for real-time guidance and are discarded 
after collection. We present a complete method for the 3D 
reconstruction of inner organs that suggests image extraction 
techniques from endoscopic videos and a novel image pre-
processing technique to reconstruct and visualize a 3D model of 
organs from an endoscopic video. We use advanced computer 
vision methods and do not require any modifications to the 
clinical-grade endoscopy hardware. We have also formalized an 
image acquisition protocol through experimentation with a 
calibrated test bed. We validate the accuracy and robustness of 
our reconstruction using a test bed with known ground truth. Our 
method can significantly contribute to endoscopy-based diagnostic 
and surgical procedures using comprehensive tissue and tumor 3D 
visualization.  

Keywords— Endoscopy, 3D reconstruction, 3D mapping, 
specular reflection removal, tissue, GI tract 

I. INTRODUCTION 
This paper addresses the problem of estimating a 3D 

reconstruction using images retrieved using endoscopic video 
images. Endoscopy and its surgery-specific derivatives, i.e., 
diagnostic imaging, surgical guidance, and cancer surveillance, 
all use 2D imaging to visualize an internal tissue or organ's true 
medical character and profile. Although endoscopy videos 
contain extensive information, the unwieldy 2D view currently 
leads to clinical practices of condensing lengthy video data into 
a few still images, along with brief notes or drawings regarding 
the locations and appearance of suspicious tumors and scars 
during diagnosis. In surgery, the 2D view augments extra 
complexity to identify the anatomical landmarks, lesion 

detection, operative complications, etc. Thus, a comprehensive 
representation of the endoscopy data that enables a 
straightforward and rapid review of a 3D reconstruction 
resulting from a Multi-view Geometry based photogrammetry 
algorithm could better support the clinical decision-making 
process. In this paper, we focus on generating 3D models of the 
interior of organs, such as the gastrointestinal (GI) tract, which 
is an important and clinically significant application. We 
emphasize our method’s ability to reconstruct an accurate and 
clinically useful tumor model within the GI tract. We also 
evaluate the accuracy of reconstruction and dataset collection 
parameters for the upper GI tract using a custom-built test bed 
with known dimensions. Although not anatomically accurate, 
the employed test bed represented the inner stomach and inner 
esophagus while keeping certain significant dimensions 
anatomically correct. Such an approach lets us better quantify 
the accuracy of our proposed method 

Several works attempt to produce accurate 3D 
reconstructions via images of organs, but fewer studies focus on 
the inner 3D reconstruction in the presence of specular 
highlights. Our method aims to capture the 3D organ shape and 
appearance while depicting clinically significant regions and 
sub-regions of organs. The ultimate goal of this work is to enable 
end-users (e.g., physicians and surgeons) to localize individual 
organ regions to anatomical locations in the organ despite the 
presence of specular highlights in the input image set. However, 
some authors have found success at reproducing organ regions 
such as 3D tumors, with relative accuracy, yet these techniques 
employed additional sensor and environmental overhead in 
clinical terms, i.e., stereo-cameras [4], cameras or light sources 
with polar lenses [5], structured light illumination projectors 
[11], time of flight cameras [12] and optical position trackers 
[13]. Our method uses various pre-processing techniques to limit 
the sources of 3D reconstruction errors in the input endoscopic 
videos. Such sources of errors include motion blur, specular 
highlights, and illumination variance. It must be mentioned here 
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that the endoscopic light source is mounted as a part of the 
endoscope, which illuminates surfaces in the direction of the 
endoscope. Therefore, images captured at changed perspectives 
will have varying lighting conditions concerning the 
surrounding geometry and obscured surfaces around the 
endoscope. The varying lighting conditions make feature 
detection and matching less reliable. Robust feature matching in 
the presence of artifacts such as specular highlights is hard to 
achieve as these serve to corrupt the description of features and 
even cause inaccuracies or failure in 3D reconstruction. 
Simultaneous localization and mapping (SLAM) and structure 
from motion (SfM) algorithms work well on a small number of 
images, removing the need to solve the problem of matching a 
feature pair from distant camera perspectives. In our case, such 
feature pairs need to be matched since the interior of organs is 
observed at close range; thus, all features belonging to an organ 
region are not likely to fall in a single camera frame.  

After outlining the previous work conducted in the domain 
of image-based 3D reconstruction in section II, section III 
illustrates the test-bed constitution and employed sensor 
specifications for dataset collection. Section IV details our 
proposed method by describing (a) endoscopic video parsing & 
in-focus image extraction, (b) avoiding fatty tissue removal, (c) 
adapted specular highlights removal, and (d) random patch 
reconstruction technique. Section V outlines the experiments' 
results and briefly discusses the proposed method's utility and 
shortcomings for varying scenarios. The performance of the 
proposed method is evaluated based on a comparison with 
ground truth. Detailed results are presented by comparing the 
method outputs to similar results generated by state-of-art 
methods in the relevant domain. 

II. LITERATURE REVIEW 
Endoscopy is a common technique in various medical fields, 

like lesion diagnosis in hollow organs or mini-invasive surgery. 
Due to its prevalence and importance in the clinical workflow 
leading to a diagnosis, many have attempted to enrich the 
conclusions drawn from endoscopy datasets. 3D reconstruction 
of organ cavities or lesions has been on the front lines of research 
in this context. The approaches for 3D reconstruction that utilize 
standard clinical hardware with almost no constraints on data 
collection over the last decade are summarized well by articles 
[14, 15]. Nonetheless, the challenges faced due to illumination 
variance and specular highlights have not yet been addressed 
explicitly by prior research. While the shape of the body cavity 
is useful for the localization of organ sub-regions and lesions by 
the physician, the surface appearance or texture is of more 
critical importance to the physician than the exact shape (e.g., 
surface pattern in colorectal tumors). We avoid comparing our 
approach to reconstruction approaches, which only present the 
construction of the organ's shape [16, 17] and not the complete 
3D reconstruction, including a textured organ model. 

Very few works have explicitly addressed the removal of 
specular highlights and reflections to improve 3D reconstruction 
accuracy and extraction of viewpoint-independent diffused 
color components for feature points [1, 6]. These works assume 
that the feature point's diffused color component will never 
reach a zero-magnitude due to the scene constraints or the use of 
a polarization filter. A particular study by Stoyanov et al. [5] 

emphasizes the reconstruction errors caused by prominent 
specular highlights caused by surgical instruments but does not 
offer any resolution technique to rectify these errors. In [17], the 
authors use a dichromatic model to remove specular reflection 
from pixels to aid the texture reconstruction. The assumption in 
this work is that the diffused component of any pixel will never 
reach zero. Tan et al. [18] propose an in-painting technique for 
specular highlight removal. Here the diffuse reflection of the 
specular pixel is determined based on the dichromatic reflection 
model. It is also assumed that a uniform illuminant color exists 
within the highlighted region. Although this method can 
preserve the diffuse shading in the highlighted region with 
strictly all pixels with non-zero diffused components, issues may 
arise from discontinuities in surface colors. Approaches such as 
[19] present elaborate methods to reconstruct organs such as a 
bladder but do not provide any solution to the specular highlights 
problem except using a primitive blur filter to reduce specular 
artifacts. 

Yoon et al. [20] claim to remove specular reflections from 
any stereo image dataset and improve the accuracy of disparity 
maps even in the presence of specular highlights. This work 
presents a notion of a specular-free two-band image that 
provides a specularity-invariant image representation. This 
representation is a simple pixel-wise computation and 
effectively removes specular highlights with a small pixel 
footprint. This algorithm, however, fails in the case of prominent 
specular highlights. In a recent method presented by Yang et al. 
[21], an effective specular highlight removal method is 
proposed, it is based on a key observation that the maximum 
fraction of the diffuse color component in diffuse local patches 
in color images changes smoothly. However, this method is 
again unable to handle zero-magnitude diffuse components as it 
can only remove specular highlights under a maximum diffuse 
chromaticity limit.  

Our proposed method in this work has novel techniques to 
eliminate the specularity in the endoscopic video images. In 
addition, our approach significantly improves Yang et al.’s 
approach for the specular highlight removal technique [21] and 
overcomes the problems of eliminating specularity and noise 
over a region with no diffused component. 

III. TEST BED AND DATASET COLLECTION 
A multipronged investigative strategy was employed to test 

and evolve the proposed method. Firstly, a test bed was created 
to target regions of the GI tract as our ultimate goal for tissue 
reconstruction. The test bed dimensions are shown in figure 1. 
These dimensions represent cavities in the upper GI tract, 
including the esophagus (typically 1-inch diameter, 10-14 
inches) and the stomach (typically 2 to 3 liters capacity). As 
actual dimensions of a human male adult’s upper GI tract differ 
from person to person, it was decided to settle on dimensions 
closest to the average dimensions found in human anatomy and 
commercially available construction units, i.e., chambers and 
pipes. 
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Fig. 1: Upper GI Cavity test bed and dimensions (in inches). 
 

The test bed was primarily used to determine the 
reconstruction accuracy. The interior of the test bed was painted 
using random brush strokes to maximize the unique visual 
features in the image dataset. Only the interior of the test bed 
was observed using a borescope camera having 640x480 pixel 
resolution (0.3-megapixel active pixels), 2” to 6” focus range, 
60 degrees Field of view (FOV), 1 meter stiff but flexible cord 
to be used as camera holder. This camera has small dimensions 
exceeding 0.32” in diameter and 1.84” in length, making it 
suitable for borescope applications in small cavities. 
As the second prong of our strategy, multiple datasets were 
collected for tissue and tissue-like objects ex-vivo. This was 
done using a high-resolution camera (4032x3024) with a focus 
range of 1” to 10”, 78-degree FOV and a light source similar to 
the endoscope light source. The subjects of these datasets were 
poultry tissue and plum. These objects were chosen explicitly 
as their reflective characteristics closely match those of cavities 
associated with the GI tract. There were camera pose 
constraints applied during the collection of these datasets. As 
per Figure 2, for an image to be captured, the camera location 
and orientation must be within certain bounds placed on values 
‘b’ and Ø. These bounds are strictly dictated by the camera's 
Depth of Field (DoF), represented by blue in the figure, the 
camera's dimensions, and the cavity's volume. Length ‘a’ is also 
strictly bounded between the DoF range.  For the particular 
scenario illustrated in Figure 2 and as per the volume of the 
stomach cavity, i.e., ~2 liters, and camera DoF, i.e., 1” to 3.5”, 
these ranges turn out to be 2” ≤ b ≤ 3.5” and Ø ≥ 0. The 
underlying idea behind these bounds is to maximize the 
observed surface area, marked red in the figure while 
maximizing the angle of approach Ø. This strategy ensures the 
maximum correspondence of visible pixels to the extracted 
visual features like SIFT. The success of this strategy is 
validated via the high-quality 3D reconstruction achieved, 
which is discussed in detail in the results section. 

 
Fig. 2: Length a represents the camera distance to the observed surface. Length 
b represents the minimum distance of the camera to the observed surface. Ø 
represents the angle of approach. 

The investigative strategy's last element comprises in-vivo 
endoscope-based dataset collection.  Datasets consisting of 
several hours of endoscopic video were acquired depicting 
multiple standard clinical procedures. A range of video clips 
were demarcated keeping in view factors such as (i) the number 
of focused/non-blurred frames, (ii) the number of focused 
frames capturing a lesion or a region of interest, (iii) camera 
pose-variety and inter-pose distance between focused frames 
and (iv) avoidance of any dynamic objects that render the scene 
non-static such as instruments or change in cavity walls or 
lesion structure. We reconstructed a lesion at the proximal 
antrum region of the stomach to test our method. 

IV. PROPOSED METHODOLOGY 
The proposed method and some of its own novelties use a 

previously proposed specular highlight removal technique [21]. 
While the technique proposed in [21] removes specular noise 
robustly and reliably in our tissue datasets, it fails to remove 
specular noise from pixels with zero diffused components. The 
technique that was employed before involved bilateral filtering 
with the assumption that the maximum fraction of the diffuse 
color component, which is commonly known as the maximum 
diffuse chromaticity in literature, changes smoothly in local 
patches of color images. A detailed stepwise explanation of the 
proposed method is given in the next section. 

A. Endoscopic Video Parsing and In-focus Image Extraction  
This module takes endoscopic video or a pre-saved camera-

based image set as input. Its job is to select frames or images that 
conform to a specific focus criteria and forward these frames to 
the next module in the processing pipeline. This module initially 
assesses the motion blur in the images provided by the camera. 
This is done to determine whether the current frame contains 
reliable, trackable SIFT features. In case the frame is determined 
to be non-blurry, the frame is added to a sub-set that will 
eventually be forwarded to the next module. The motion blur is 
detected using a weighted average of two detection methods [8, 
9]. The first detection method works via convolving the image 
with a Laplacian operator. The Laplacian operator highlights 
regions containing rapid intensity changes. The assumption here 
is that if an image contains high variance, then there is 
widespread of both edge-like and non-edge-like, representative 
responses of a normal, in-focus image. But if there is a very low 
variance, then there is a small spread of responses, indicating 
fewer edges in the image. 

 
Fig. 3: Method Flow-chart 
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The Laplacian kernel can be computed using the following 
expression: x and y represent the 2D kernel row and column 
indices. 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) =  
1
𝜋𝜋𝜎𝜎4

�1 −
𝑥𝑥2 + 𝑦𝑦2

2𝜎𝜎2
� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2
2𝜎𝜎2                  (1) 

The second blur detection method is based on Normalized 
Grey Level Variance among image pixels. In this measure, 
bright and dark pixels have the same influence on the measure. 
Normalized variance, in this case, compensates for the 
differences in average image brightness among different images. 
It is essential to mention here that due to camera orientation 
towards the inner walls of the cavity and the nature of motion 
vectors, the images suffer from non-uniform blur. The following 
expression quantifies the measure term. 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥,𝑦𝑦) =  
1

𝑀𝑀𝑀𝑀𝑔̅𝑔
��[𝑔𝑔(𝑥𝑥,𝑦𝑦) − 𝑔̅𝑔]2

𝑁𝑁𝑀𝑀

        (2) 

 A weighted combination of both blur-detection methods was 
deployed, and a threshold value was determined empirically to 
classify between blurry and non-blurry frames. 

B. Avoiding Fatty Tissue Removal 
After passing the motion blur test, the subset of frames is 

evaluated for the size of the largest fatty tissue. Previously 
proposed methods [17-20] consider white fatty tissue in our 
datasets as specular highlights causing unnecessary loss of 
information. To avoid this problem, fatty tissue is distinguished 
from specular highlight via a smooth specular continuity 
constraint. Fatty tissues do not conform to such a constraint; 
thus, corresponding pixels are left out of the specular highlight 
removal processing loop. We use the Intensity Logarithmic 
Differentiation technique defined in [22]. 

C. Adopted Specular Highlight Removal 
The bilateral Filtering based Specular Highlight Removal 
technique in [21] was adapted to suit our collected datasets. 
Primary concerns addressed under the proposed adaptation 
include: 

1. Specular highlight removal for light sources creating 
prominent highlights, i.e., more than 1⁄2 inch in 
diameter. 

2. Partial Estimation of missing information through di-
chromatic reflection model. 

3. Estimation of missing information, i.e., zero diffused 
component through random patch reconstruction. 

The method is listed stepwise below: 
1. Each pixel in the image is divided into diffused and 

specular reflection components using a bilateral 
filtering method [21]. 

2. Divide the original image into three color channels blue 
(B), green (G), and red (R). Find specular highlight 
boundaries𝑏𝑏𝑖𝑖𝜖𝜖 (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑛𝑛)for each of the channels 
based on a grey-level threshold for each 

channel;  𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐵𝐵 , 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐺𝐺 , 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑅𝑅 . We do not 
include boundaries for fatty tissue segments identified. 
The illustration in Figure 4 shows the yellow arrows 
that mark the highlighted patch's boundaries. 

 
Fig. 4: (Right) Yellow arrows mark the boundaries of the highlighted patch. 
(Left) The peak grey value of the Specular component indicates a specular 
highlight. Often, there is no diffuse component for pixels where peak values for 
specular components exist. 

3. Now for each pixel that lies within 𝑏𝑏𝑖𝑖, a color is chosen 
using a novel random patch reconstruction technique. 
The chosen color is assigned to 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

4. Use a preference relation to assign a diffused 
component and a specular component to each pixel 
having it's specular greater than 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  value. 
These pixels are expected to be part of the specular 
highlight we wish to remove and will usually have a 
large specular component. The preference relation is 
based on the sigmoid function, which helps to 
smoothly transfer weight from diffused components 
over to random patch values. The relation is given by 

𝑤𝑤𝑤𝑤 = min � 1

(1+𝑒𝑒−30�𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑥𝑥,𝑦𝑦−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
, 1�          (4) 

𝑖𝑖𝑖𝑖𝑔𝑔𝑥𝑥,𝑦𝑦.𝑏𝑏 = (1 − 𝑤𝑤𝑤𝑤) �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑥𝑥,𝑦𝑦. 𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑥𝑥,𝑦𝑦�  +
𝑤𝑤𝑤𝑤(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑏𝑏)      (5) 

5. Here 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑥𝑥,𝑦𝑦and 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑥𝑥,𝑦𝑦represent the diffused 
and the specular component of a color pixel. It must 
be noted here that diffused component consists of 
.b(blue), .g(green), and .r(red) channels, while the 
specular component only consists of the single grey-
level channel. It must also be noted that equation (5) 
needs to be written for both green and red channels. 
Provided we use the convention of assigning float 
values from 0 to 1 to b, g, r, and grey channels, a 
resultant function graph representing (5) can be seen 
in Figure 5. 
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Fig. 5: Function plot representing Eq. 5 where 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 value is 0.5. The 
sigmoid shows the smooth transition from diffused component to 
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 for a pixel located in the highlighted region. 

D. Random Patch Reconstruction Technique 
Missing diffused reflection component information due to zero-

magnitude diffused components can be estimated through random 
patch reconstruction. The most apparent benefit of such an approach 
is that the descriptors of the corresponding local features do not 
produce a false match between an image pair having a scene overlap. 
The random patch reconstruction technique comprises of following 
steps; 

1. Select patches of values greater than 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐵𝐵 , 
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝐺𝐺and 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑅𝑅 for each of the Blue, Green, and Red 
channels. 

2. Calculate the average area of all three patches. Choose the 
patch with the area closest to the average area. We do this 
because patches in Blue, Green and Red channels 
sometimes differ in size by a significant margin. The 
average patch size is usually representative of the highly 
specular area. 

3. We randomly fill this patch with the color of any patch 
boundary points that satisfy the criteria in 4.  

4. In case a point  𝑝𝑝𝑝𝑝𝑥𝑥,𝑦𝑦  lies between the patch center and 
boundary point or in its vicinity (dictated by param1), it is 
randomly allotted the color of the closest points on the 
patch boundary. This color is allotted to 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.  

5. To further elaborate, see Figure 6 (Right). This diagram 
shows that for any gray points, it is evaluated whether the 
gray point lies between a boundary pixel and a black patch 
center. This is only true if 
- r1+b1 <= param1*dist(center to boundary pt) 
- r2+b2 <= param1*dist(center to boundary pt) 
- r3+b3 <= param1*dist(center to boundary pt) 
- r4+b4 <= param1*dist(center to boundary pt) 

In the scenario given in Figure 6 (right), we see that r4+b4 <= 
param1*dist (center to boundary pt) is not equal to true. Thus, 
the gray point, which involves r4 and b4, is not between the 
patch center and the boundary point in question (orange). In 
case a point lies between the patch center and the orange 
boundary point or in its vicinity (dictated by Param1), it is 
randomly allotted orange, red, or yellow color, i.e., the color of 
neighbors of orange or its color is allotted to 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

 
Fig. 6: (Left) Partially filled patch points. Notice how each patch point has a 
color from a set of patch boundaries closest to it. (Right) It is evaluated whether 
the grey point lies between a boundary pixel and black patch center for any gray 
points. 

V. RESULTS 
Out of many in-vivo and ex-vivo datasets, results for only 

three are presented here. Detailed results and justification for 
selecting each dataset set are listed below. The following 
datasets were processed through the method pipeline, and 
respective 3D reconstructions were created. 

Stomach & Esophagus (Upper GI tract test bed) Dataset: 
This dataset is chosen to establish an accuracy baseline since 
ground truth is available. Results are very accurate for highly 
textured chambers, and the pipe’s interior surface was detected 
as sub-millimeter ridges within the chamber. The model was 
accurate within ±0.7 mm except for the edges of the model, 
which were not thoroughly captured. 3D reconstruction results 
can be seen in Figure 7. 

 
Fig. 7: 3D Reconstruction results for Upper GI tract test bed. Mock tumors (light 
green) can also be observed in the reconstruction. 

Poultry Tissue Dataset: This dataset is chosen as the 
poultry tissue reflectivity is similar to GI tract walls. The tissue 
also bears some fat, so it is a good choice for a fatty tissue 
reconstruction test. The results were accurate from 
contemporary methods like [18]. Results can be seen in Figure 
8. 

250
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on July 18,2025 at 03:20:26 UTC from IEEE Xplore.  Restrictions apply. 



 

 

Fig. 8: (A) Original poultry dataset image. (B) Proposed method image – 
Specular highlights removed. (C) 3D mesh created via contemporary method 
[18] (D) 3D mesh created via the proposed method. (E) Final 3D reconstruction 
via the proposed method. 

Endoscopy Video Proximal Antrum Dataset: A lesion at the 
proximal antrum region of the stomach was chosen. This video 
has most of the common artifacts and complicated scenarios 
found in endoscopic videos and provided that this 3D 
reconstruction was created from only 47 images which were not 
very far apart in terms of camera pose. Results can be seen in 
Figure 9. 

  

 

 

 

Fig. 9: (A) Original Endoscopy video frame. (B) Proposed method frame – 
Specular highlights removed. (C) 3D mesh created via contemporary method 
[18] (D) 3D mesh created via the proposed method. (E) Final 3D reconstruction 
via the proposed method 

VI. CONCLUSION 
This paper presents a reliable and robust specular reflection 

removal method for 3D tissue reconstruction. One of the 
primary claims of this method is the complete removal of 
specular highlights with a zero-magnitude diffused reflection 
component. A novel patch reconstruction technique was 
introduced that would reconstruct the missing image 
information in a way that descriptors of the corresponding local 
features do not produce a false match between an image pair 
having a scene overlap. This produces a more accurate 3D 
reconstruction resilient to specular highlights in terms of 3D 
model and texture reconstruction. Experiments show superior 
accuracy for the proposed method in terms of highlight removal 
and 3D reconstruction compared to contemporary methods. 
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