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Abstract— Endoscopy is widely employed for diagnostic
examination of the interior of organs and body cavities and
numerous surgical interventions. Still, the inability to correlate
individual 2D images with 3D organ morphology limits its
applications, especially in intra-operative planning and
navigation, disease physiology, cancer surveillance, etc. As a
result, most endoscopy videos, which carry enormous data
potential, are used only for real-time guidance and are discarded
after collection. We present a complete method for the 3D
reconstruction of inner organs that suggests image extraction
techniques from endoscopic videos and a novel image pre-
processing technique to reconstruct and visualize a 3D model of
organs from an endoscopic video. We use advanced computer
vision methods and do not require any modifications to the
clinical-grade endoscopy hardware. We have also formalized an
image acquisition protocol through experimentation with a
calibrated test bed. We validate the accuracy and robustness of
our reconstruction using a test bed with known ground truth. Our
method can significantly contribute to endoscopy-based diagnostic
and surgical procedures using comprehensive tissue and tumor 3D
visualization.

Keywords— Endoscopy, 3D reconstruction, 3D mapping,
specular reflection removal, tissue, GI tract

[. INTRODUCTION

This paper addresses the problem of estimating a 3D
reconstruction using images retrieved using endoscopic video
images. Endoscopy and its surgery-specific derivatives, i.e.,
diagnostic imaging, surgical guidance, and cancer surveillance,
all use 2D imaging to visualize an internal tissue or organ's true
medical character and profile. Although endoscopy videos
contain extensive information, the unwieldy 2D view currently
leads to clinical practices of condensing lengthy video data into
a few still images, along with brief notes or drawings regarding
the locations and appearance of suspicious tumors and scars
during diagnosis. In surgery, the 2D view augments extra
complexity to identify the anatomical landmarks, lesion
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detection, operative complications, etc. Thus, a comprehensive
representation of the endoscopy data that enables a
straightforward and rapid review of a 3D reconstruction
resulting from a Multi-view Geometry based photogrammetry
algorithm could better support the clinical decision-making
process. In this paper, we focus on generating 3D models of the
interior of organs, such as the gastrointestinal (GI) tract, which
is an important and clinically significant application. We
emphasize our method’s ability to reconstruct an accurate and
clinically useful tumor model within the GI tract. We also
evaluate the accuracy of reconstruction and dataset collection
parameters for the upper GI tract using a custom-built test bed
with known dimensions. Although not anatomically accurate,
the employed test bed represented the inner stomach and inner
esophagus while keeping certain significant dimensions
anatomically correct. Such an approach lets us better quantify
the accuracy of our proposed method

Several works attempt to produce accurate 3D
reconstructions via images of organs, but fewer studies focus on
the inner 3D reconstruction in the presence of specular
highlights. Our method aims to capture the 3D organ shape and
appearance while depicting clinically significant regions and
sub-regions of organs. The ultimate goal of this work is to enable
end-users (e.g., physicians and surgeons) to localize individual
organ regions to anatomical locations in the organ despite the
presence of specular highlights in the input image set. However,
some authors have found success at reproducing organ regions
such as 3D tumors, with relative accuracy, yet these techniques
employed additional sensor and environmental overhead in
clinical terms, i.e., stereo-cameras [4], cameras or light sources
with polar lenses [5], structured light illumination projectors
[11], time of flight cameras [12] and optical position trackers
[13]. Our method uses various pre-processing techniques to limit
the sources of 3D reconstruction errors in the input endoscopic
videos. Such sources of errors include motion blur, specular
highlights, and illumination variance. It must be mentioned here
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that the endoscopic light source is mounted as a part of the
endoscope, which illuminates surfaces in the direction of the
endoscope. Therefore, images captured at changed perspectives
will have varying lighting conditions concerning the
surrounding geometry and obscured surfaces around the
endoscope. The varying lighting conditions make feature
detection and matching less reliable. Robust feature matching in
the presence of artifacts such as specular highlights is hard to
achieve as these serve to corrupt the description of features and
even cause inaccuracies or failure in 3D reconstruction.
Simultaneous localization and mapping (SLAM) and structure
from motion (SfM) algorithms work well on a small number of
images, removing the need to solve the problem of matching a
feature pair from distant camera perspectives. In our case, such
feature pairs need to be matched since the interior of organs is
observed at close range; thus, all features belonging to an organ
region are not likely to fall in a single camera frame.

After outlining the previous work conducted in the domain
of image-based 3D reconstruction in section II, section III
illustrates the test-bed constitution and employed sensor
specifications for dataset collection. Section IV details our
proposed method by describing (a) endoscopic video parsing &
in-focus image extraction, (b) avoiding fatty tissue removal, (¢)
adapted specular highlights removal, and (d) random patch
reconstruction technique. Section V outlines the experiments'
results and briefly discusses the proposed method's utility and
shortcomings for varying scenarios. The performance of the
proposed method is evaluated based on a comparison with
ground truth. Detailed results are presented by comparing the
method outputs to similar results generated by state-of-art
methods in the relevant domain.

II. LITERATURE REVIEW

Endoscopy is a common technique in various medical fields,
like lesion diagnosis in hollow organs or mini-invasive surgery.
Due to its prevalence and importance in the clinical workflow
leading to a diagnosis, many have attempted to enrich the
conclusions drawn from endoscopy datasets. 3D reconstruction
of organ cavities or lesions has been on the front lines of research
in this context. The approaches for 3D reconstruction that utilize
standard clinical hardware with almost no constraints on data
collection over the last decade are summarized well by articles
[14, 15]. Nonetheless, the challenges faced due to illumination
variance and specular highlights have not yet been addressed
explicitly by prior research. While the shape of the body cavity
is useful for the localization of organ sub-regions and lesions by
the physician, the surface appearance or texture is of more
critical importance to the physician than the exact shape (e.g.,
surface pattern in colorectal tumors). We avoid comparing our
approach to reconstruction approaches, which only present the
construction of the organ's shape [16, 17] and not the complete
3D reconstruction, including a textured organ model.

Very few works have explicitly addressed the removal of
specular highlights and reflections to improve 3D reconstruction
accuracy and extraction of viewpoint-independent diffused
color components for feature points [1, 6]. These works assume
that the feature point's diffused color component will never
reach a zero-magnitude due to the scene constraints or the use of
a polarization filter. A particular study by Stoyanov et al. [5]

emphasizes the reconstruction errors caused by prominent
specular highlights caused by surgical instruments but does not
offer any resolution technique to rectify these errors. In [17], the
authors use a dichromatic model to remove specular reflection
from pixels to aid the texture reconstruction. The assumption in
this work is that the diffused component of any pixel will never
reach zero. Tan et al. [18] propose an in-painting technique for
specular highlight removal. Here the diffuse reflection of the
specular pixel is determined based on the dichromatic reflection
model. It is also assumed that a uniform illuminant color exists
within the highlighted region. Although this method can
preserve the diffuse shading in the highlighted region with
strictly all pixels with non-zero diffused components, issues may
arise from discontinuities in surface colors. Approaches such as
[19] present elaborate methods to reconstruct organs such as a
bladder but do not provide any solution to the specular highlights
problem except using a primitive blur filter to reduce specular
artifacts.

Yoon et al. [20] claim to remove specular reflections from
any stereo image dataset and improve the accuracy of disparity
maps even in the presence of specular highlights. This work
presents a notion of a specular-free two-band image that
provides a specularity-invariant image representation. This
representation is a simple pixel-wise computation and
effectively removes specular highlights with a small pixel
footprint. This algorithm, however, fails in the case of prominent
specular highlights. In a recent method presented by Yang et al.
[21], an effective specular highlight removal method is
proposed, it is based on a key observation that the maximum
fraction of the diffuse color component in diffuse local patches
in color images changes smoothly. However, this method is
again unable to handle zero-magnitude diffuse components as it
can only remove specular highlights under a maximum diffuse
chromaticity limit.

Our proposed method in this work has novel techniques to
eliminate the specularity in the endoscopic video images. In
addition, our approach significantly improves Yang et al.’s
approach for the specular highlight removal technique [21] and
overcomes the problems of eliminating specularity and noise
over a region with no diffused component.

III. TEST BED AND DATASET COLLECTION

A multipronged investigative strategy was employed to test
and evolve the proposed method. Firstly, a test bed was created
to target regions of the GI tract as our ultimate goal for tissue
reconstruction. The test bed dimensions are shown in figure 1.
These dimensions represent cavities in the upper GI tract,
including the esophagus (typically 1-inch diameter, 10-14
inches) and the stomach (typically 2 to 3 liters capacity). As
actual dimensions of a human male adult’s upper GI tract differ
from person to person, it was decided to settle on dimensions
closest to the average dimensions found in human anatomy and
commercially available construction units, i.e., chambers and

pipes.
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Fig. 1: Upper GI Cavity test bed and dimensions (in inches).

The test bed was primarily used to determine the

reconstruction accuracy. The interior of the test bed was painted
using random brush strokes to maximize the unique visual
features in the image dataset. Only the interior of the test bed
was observed using a borescope camera having 640x480 pixel
resolution (0.3-megapixel active pixels), 2” to 6” focus range,
60 degrees Field of view (FOV), 1 meter stiff but flexible cord
to be used as camera holder. This camera has small dimensions
exceeding 0.32” in diameter and 1.84” in length, making it
suitable for borescope applications in small cavities.
As the second prong of our strategy, multiple datasets were
collected for tissue and tissue-like objects ex-vivo. This was
done using a high-resolution camera (4032x3024) with a focus
range of 17 to 107, 78-degree FOV and a light source similar to
the endoscope light source. The subjects of these datasets were
poultry tissue and plum. These objects were chosen explicitly
as their reflective characteristics closely match those of cavities
associated with the GI tract. There were camera pose
constraints applied during the collection of these datasets. As
per Figure 2, for an image to be captured, the camera location
and orientation must be within certain bounds placed on values
‘b’ and . These bounds are strictly dictated by the camera's
Depth of Field (DoF), represented by blue in the figure, the
camera's dimensions, and the cavity's volume. Length ‘a’ is also
strictly bounded between the DoF range. For the particular
scenario illustrated in Figure 2 and as per the volume of the
stomach cavity, i.e., ~2 liters, and camera DoF, i.e., 17 to 3.5”,
these ranges turn out to be 2” < b < 3.5 and @ > 0. The
underlying idea behind these bounds is to maximize the
observed surface area, marked red in the figure while
maximizing the angle of approach @. This strategy ensures the
maximum correspondence of visible pixels to the extracted
visual features like SIFT. The success of this strategy is
validated via the high-quality 3D reconstruction achieved,
which is discussed in detail in the results section.

a

—t e

Fig. 2: Length a represents the camera distance to the observed surface. Length
b represents the minimum distance of the camera to the observed surface. @
represents the angle of approach.

The investigative strategy's last element comprises in-vivo
endoscope-based dataset collection. Datasets consisting of
several hours of endoscopic video were acquired depicting
multiple standard clinical procedures. A range of video clips
were demarcated keeping in view factors such as (i) the number
of focused/non-blurred frames, (ii) the number of focused
frames capturing a lesion or a region of interest, (iii) camera
pose-variety and inter-pose distance between focused frames
and (iv) avoidance of any dynamic objects that render the scene
non-static such as instruments or change in cavity walls or
lesion structure. We reconstructed a lesion at the proximal
antrum region of the stomach to test our method.

IV. PROPOSED METHODOLOGY

The proposed method and some of its own novelties use a
previously proposed specular highlight removal technique [21].
While the technique proposed in [21] removes specular noise
robustly and reliably in our tissue datasets, it fails to remove
specular noise from pixels with zero diffused components. The
technique that was employed before involved bilateral filtering
with the assumption that the maximum fraction of the diffuse
color component, which is commonly known as the maximum
diffuse chromaticity in literature, changes smoothly in local
patches of color images. A detailed stepwise explanation of the
proposed method is given in the next section.

A. Endoscopic Video Parsing and In-focus Image Extraction

This module takes endoscopic video or a pre-saved camera-
based image set as input. Its job is to select frames or images that
conform to a specific focus criteria and forward these frames to
the next module in the processing pipeline. This module initially
assesses the motion blur in the images provided by the camera.
This is done to determine whether the current frame contains
reliable, trackable SIFT features. In case the frame is determined
to be non-blurry, the frame is added to a sub-set that will
eventually be forwarded to the next module. The motion blur is
detected using a weighted average of two detection methods [8,
9]. The first detection method works via convolving the image
with a Laplacian operator. The Laplacian operator highlights
regions containing rapid intensity changes. The assumption here
is that if an image contains high variance, then there is
widespread of both edge-like and non-edge-like, representative
responses of a normal, in-focus image. But if there is a very low
variance, then there is a small spread of responses, indicating
fewer edges in the image.

Endoscopic video
parsing and in-focus
frame extraction

negligible
fatty tissue Avoiding fatty tissue

removal

Adapted specular
highlight removal

Random patch Add to 3D
reconstruction technique reconstruction dataset
/ /
/ Specular
/ highlight Sf—

removed frame //

Fig. 3: Method Flow-chart
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The Laplacian kernel can be computed using the following
expression: x and y represent the 2D kernel row and column

indices.
1 x? +y?| xay?
LOG(X, y) = m [1 - ?‘2] e 2o (1)
The second blur detection method is based on Normalized
Grey Level Variance among image pixels. In this measure,
bright and dark pixels have the same influence on the measure.
Normalized variance, in this case, compensates for the

differences in average image brightness among different images.
It is essential to mention here that due to camera orientation
towards the inner walls of the cavity and the nature of motion
vectors, the images suffer from non-uniform blur. The following
expression quantifies the measure term.

1
Eormvar(%,y) = WgZZ[g(x: y) — g_]z 2)

A weighted combination of both blur-detection methods was
deployed, and a threshold value was determined empirically to
classify between blurry and non-blurry frames.

B. Avoiding Fatty Tissue Removal

After passing the motion blur test, the subset of frames is
evaluated for the size of the largest fatty tissue. Previously
proposed methods [17-20] consider white fatty tissue in our
datasets as specular highlights causing unnecessary loss of
information. To avoid this problem, fatty tissue is distinguished
from specular highlight via a smooth specular continuity
constraint. Fatty tissues do not conform to such a constraint;
thus, corresponding pixels are left out of the specular highlight
removal processing loop. We use the Intensity Logarithmic
Differentiation technique defined in [22].

C. Adopted Specular Highlight Removal

The bilateral Filtering based Specular Highlight Removal
technique in [21] was adapted to suit our collected datasets.
Primary concerns addressed under the proposed adaptation
include:

1. Specular highlight removal for light sources creating
prominent highlights, i.e., more than 12 inch in
diameter.

2. Partial Estimation of missing information through di-
chromatic reflection model.

3. Estimation of missing information, i.e., zero diffused
component through random patch reconstruction.

The method is listed stepwise below:
1. Each pixel in the image is divided into diffused and
specular reflection components using a bilateral
filtering method [21].

2. Divide the original image into three color channels blue
(B), green (G), and red (R). Find specular highlight
boundariesb;€ (by, by, ..., by)for each of the channels
based on a grey-level threshold for each

channel; threshg, thresh;, threshy . We do not
include boundaries for fatty tissue segments identified.
The illustration in Figure 4 shows the yellow arrows
that mark the highlighted patch's boundaries.

V.
%/\\
@

Fig. 4: (Right) Yellow arrows mark the boundaries of the highlighted patch.
(Left) The peak grey value of the Specular component indicates a specular
highlight. Often, there is no diffuse component for pixels where peak values for
specular components exist.

3. Now for each pixel that lies within b;, a color is chosen
using a novel random patch reconstruction technique.
The chosen color is assigned to rndcolor.

4. Use a preference relation to assign a diffused
component and a specular component to each pixel
having it's specular greater than threshgy,.. value.
These pixels are expected to be part of the specular
highlight we wish to remove and will usually have a
large specular component. The preference relation is
based on the sigmoid function, which helps to
smoothly transfer weight from diffused components
over to random patch values. The relation is given by

. 1
wt = min ((1+e—30(specx_y—threshspec) ’ 1) (4)

imgy,,.b = (1 —wt) (diffusex‘y. b + specx,y) +
wt(rndcolor.b)  (5)

5. Here dif fuse, yand spec, ,represent the diffused
and the specular component of a color pixel. It must
be noted here that diffused component consists of
.b(blue), .g(green), and .r(red) channels, while the
specular component only consists of the single grey-
level channel. It must also be noted that equation (5)
needs to be written for both green and red channels.
Provided we use the convention of assigning float
values from 0 to | to b, g, r, and grey channels, a
resultant function graph representing (5) can be seen
in Figure 5.
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Specular Reflection Component of a pixel in highlighted region
Fig. 5: Function plot representing Eq. 5 where threshg, valueis 0.5. The
sigmoid shows the smooth transition from diffused component to
rndcolor for a pixel located in the highlighted region.

Weight of rndeolor for a pixel in highlighted region

D. Random Patch Reconstruction Technique

Missing diffused reflection component information due to zero-
magnitude diffused components can be estimated through random
patch reconstruction. The most apparent benefit of such an approach
is that the descriptors of the corresponding local features do not
produce a false match between an image pair having a scene overlap.
The random patch reconstruction technique comprises of following
steps;

1. Select patches of values greater than threshy ,
threshgand threshy for each of the Blue, Green, and Red
channels.

2. Calculate the average area of all three patches. Choose the
patch with the area closest to the average area. We do this
because patches in Blue, Green and Red channels
sometimes differ in size by a significant margin. The
average patch size is usually representative of the highly
specular area.

3.  We randomly fill this patch with the color of any patch
boundary points that satisfy the criteria in 4.

4. In case a point pt,, lies between the patch center and
boundary point or in its vicinity (dictated by paraml), it is
randomly allotted the color of the closest points on the
patch boundary. This color is allotted to rndcolor.

5. To further elaborate, see Figure 6 (Right). This diagram
shows that for any gray points, it is evaluated whether the
gray point lies between a boundary pixel and a black patch
center. This is only true if
- rltbl <= paraml *dist(center to boundary pt)

- 124b2 <= paraml *dist(center to boundary pt)
- 13+b3 <= paraml *dist(center to boundary pt)
- 14+b4 <= paraml *dist(center to boundary pt)

In the scenario given in Figure 6 (right), we see that r4+b4 <=
param!*dist (center to boundary pt) is not equal to true. Thus,
the gray point, which involves r4 and b4, is not between the
patch center and the boundary point in question (orange). In
case a point lies between the patch center and the orange
boundary point or in its vicinity (dictated by Paraml), it is
randomly allotted orange, red, or yellow color, i.e., the color of
neighbors of orange or its color is allotted to rndcolor.

Fig. 6: (Left) Partially filled patch points. Notice how each patch point has a
color from a set of patch boundaries closest to it. (Right) It is evaluated whether
the grey point lies between a boundary pixel and black patch center for any gray
points.

V. RESULTS

Out of many in-vivo and ex-vivo datasets, results for only
three are presented here. Detailed results and justification for
selecting each dataset set are listed below. The following
datasets were processed through the method pipeline, and
respective 3D reconstructions were created.

Stomach & Esophagus (Upper GI tract test bed) Dataset:
This dataset is chosen to establish an accuracy baseline since
ground truth is available. Results are very accurate for highly
textured chambers, and the pipe’s interior surface was detected
as sub-millimeter ridges within the chamber. The model was
accurate within 0.7 mm except for the edges of the model,
which were not thoroughly captured. 3D reconstruction results
can be seen in Figure 7.

Fig. 7: 3D Reconstruction results for Upper GI tract test bed. Mock tumors (light
green) can also be observed in the reconstruction.

Poultry Tissue Dataset: This dataset is chosen as the
poultry tissue reflectivity is similar to GI tract walls. The tissue
also bears some fat, so it is a good choice for a fatty tissue
reconstruction test. The results were accurate from
contemporary methods like [18]. Results can be seen in Figure
8.
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Fig. 8: (A) Original poultry dataset image. (B) Proposed method image —
Specular highlights removed. (C) 3D mesh created via contemporary method
[18] (D) 3D mesh created via the proposed method. (E) Final 3D reconstruction
via the proposed method.

Endoscopy Video Proximal Antrum Dataset: A lesion at the
proximal antrum region of the stomach was chosen. This video
has most of the common artifacts and complicated scenarios
found in endoscopic videos and provided that this 3D
reconstruction was created from only 47 images which were not
very far apart in terms of camera pose. Results can be seen in
Figure 9.

Fig. 9: (A) Original Endoscopy video frame. (B) Proposed method frame —
Specular highlights removed. (C) 3D mesh created via contemporary method
[18] (D) 3D mesh created via the proposed method. (E) Final 3D reconstruction
via the proposed method

VI. CONCLUSION

This paper presents a reliable and robust specular reflection
removal method for 3D tissue reconstruction. One of the
primary claims of this method is the complete removal of
specular highlights with a zero-magnitude diffused reflection
component. A novel patch reconstruction technique was
introduced that would reconstruct the missing image
information in a way that descriptors of the corresponding local
features do not produce a false match between an image pair
having a scene overlap. This produces a more accurate 3D
reconstruction resilient to specular highlights in terms of 3D
model and texture reconstruction. Experiments show superior
accuracy for the proposed method in terms of highlight removal
and 3D reconstruction compared to contemporary methods.
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