Journal of Imaging Informatics in Medicine
https://doi.org/10.1007/510278-025-01635-y

=

Check for
updates

Graph Neural Networks for Realistic Bleeding Prediction in Surgical
Simulators

Yasar C. Kakdas'® - Suvranu De?® - Doga Demirel®

Received: 7 April 2025 / Revised: 30 June 2025 / Accepted: 28 July 2025
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2025

Abstract

This study presents a novel approach using graph neural networks to predict the risk of internal bleeding using vessel maps
derived from patient CT and MRI scans, aimed at enhancing the realism of surgical simulators for emergency scenarios such
as trauma, where rapid detection of internal bleeding can be lifesaving. First, medical images are segmented and converted
into graph representations of the vasculature, where nodes represent vessel branching points with spatial coordinates and
edges encode vessel features such as length and radius. Due to no existing dataset directly labeling bleeding risks, we cal-
culate the bleeding probability for each vessel node using a physics-based heuristic, peripheral vascular resistance via the
Hagen-Poiseuille equation. A graph attention network is then trained to regress these probabilities, effectively learning to
predict hemorrhage risk from the graph-structured imaging data. The model is trained using a tenfold cross-validation on a
combined dataset of 1708 vessel graphs extracted from four public image datasets (MSD, KiTS, AbdomenCT, CT-ORG) with
optimization via the Adam optimizer, mean squared error loss, early stopping, and L2 regularization. Our model achieves
a mean R-squared of 0.86, reaching up to 0.9188 in optimal configurations and low mean training and validation losses of
0.0069 and 0.0074, respectively, in predicting bleeding risk, with higher performance on well-connected vascular graphs.
Finally, we integrate the trained model into an immersive virtual reality environment to simulate intra-abdominal bleed-
ing scenarios for immersive surgical training. The model demonstrates robust predictive performance despite the inherent
sparsity of real-life datasets.

Keywords Bleeding prediction - Graph neural network - Surgical simulator - Virtual reality - Medical imaging - Trauma
training

Introduction

Internal bleeding, hemorrhage, in trauma patients is a life-
threatening condition that must be identified and managed
rapidly [1, 2]. Statistics show that trauma is the leading
cause of death with over five million people worldwide
fatalities due to injuries each year [3]. Massive hemorrhage
is the cause of death in 40% of trauma deaths and is con-
sidered one of the most life-threatening complications of
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injuries [2, 4]. Despite its fatal consequences, hemorrhage
is treatable once they are detected at the early stages of the
injury. Therefore, most of the trauma-based deaths are pre-
ventable with appropriate intervention [4—7]. This has moti-
vated the development of advanced training tools, including
high-fidelity virtual reality (VR) surgical simulators to help
clinicians practice diagnosing and treating internal bleeding
in a risk-free environment [8—10]. However, current simula-
tors typically rely on simplistic or pre-programmed models
of bleeding, which may not capture the patient-specific vari-
ability seen in real-life hemorrhage cases. There is a need for
simulation approaches that use actual patient data to drive
realistic bleeding behavior, thereby improving training real-
ism and effectiveness.

Meanwhile, the field of medical imaging informatics has
produced repositories of clinical imaging data, such as CT
and MRI scans, and increasingly powerful Al methods to
analyze them. In particular, deep learning has shown great
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promise in interpreting medical images for diagnosis and
risk stratification [11]. Graph neural networks (GNNs) are
an emerging class of deep learning models that operate on
graph-structured data [12, 13] and are well-suited for repre-
senting anatomical networks such as blood vessel structures.
Unlike convolutional neural networks (CNNs), which excel
at image pixel grids, GNNs can capture complex relational
information by modeling anatomical entities as nodes and
their connections as edges. GNN approaches have been
applied successfully in a variety of biomedical contexts, for
example, to analyze brain connectivity graphs in fMRI data
[14], to predict patient diagnoses or outcomes from rela-
tional health data [15], and to model molecular or drug inter-
action networks [16—18]. These works suggest that GNNs
can extract meaningful patterns from graph representations
of medical data. However, to our knowledge, GNNs have
not yet been utilized to predict acute pathological events like
hemorrhage using medical imaging data. Recent research
has begun to bridge physiological modeling with machine
learning, using a physics-informed GNN to predict blood
flow and pressure in cerebral vessels [19], but such methods
have not been extended to simulating emergency scenarios
or integrated into training tools.

In this study, we propose a unique framework that com-
bines imaging informatics and GNNs to predict internal
bleeding risks and using those predictions in a VR simula-
tor. Our approach begins with extracting detailed maps of
blood vessels from computed tomography (CT) and mag-
netic resonance imaging (MRI) scans of the abdomen. Then,
we convert the vessel maps into graphs and compute the
bleeding probability of each node based on peripheral vascu-
lar resistance (PVR) [20]. By mapping the computed resist-
ance values to a probability scale, we obtain a plausible risk
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score for hemorrhage at each location. These scores serve
as ground truth for training our GNN model. We employ
a graph attention network (GAT), a type of GNN that can
weigh the importance of neighboring nodes’ features to pre-
dict the bleeding probability at each node given the graph of
the entire vessel tree. The GAT is trained and validated on
a combination of real medical imaging datasets with 1708
total graphs.

We integrate the trained GNN into a VR surgical sim-
ulator to create an interactive training scenario for intra-
abdominal bleeding (hemoperitoneum). In our simulator,
the GNN’s output, predicted high-risk vessels, is used to
determine where and when bleeding should occur in the vir-
tual patient model. This means each simulation run can be
personalized to a patient’s anatomy and injury risk, which
is a substantial improvement over a fixed, scripted scenario.
To our knowledge, this is the first time that imaging-derived
Al predictions have been used to drive a real-time surgical
simulation. Prior works on VR surgical training have imple-
mented bleeding effects with graphical techniques [21], but
without using patient-specific data or predictive analytics.
By bridging medical image analysis with simulation, our
framework allows trainees to encounter more realistic and
varied hemorrhage scenarios, informed by actual clinical
data.

Materials and Methods

Our framework, as depicted in Fig. 1, consists of four major
components: a) pre-processing medical image datasets con-
sisting of binary segmented CT and MRI scans into graphs
that encapsulate the vascular tree extracted from images
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where nodes are branching points with (x, y, z) coordinates
metadata and edges are vessels with several features such
as radius and length of the vessel; b) a GNN-based node
regression model that predicts the bleeding probability at
each vessel node; c) evaluation of the model’s performance
considering training, validation losses, and R-squared; d)
deployment of the framework into a virtual scene by build-
ing a bleeding-based medical scenario, in our case, intra-
abdominal bleeding [22].

Data Pre-processing

The first part of our framework pipeline is to find appropri-
ate CT and MRI scan images and process them. We have
used public datasets from the Medical Segmentation Decath-
lon MSD) [23], Kidney Tumor Segmentation Challenge
(KiTS23) [24], AbdomenCT-1 K [25], and CT-ORG [26].
From these, we extracted the blood vessels in organs and the
abdominal cavity by selecting the segmentation labels cor-
responding to vascular structures. All images retrieved from
the datasets are encoded in the Neuroimaging Informatics
Technology Initiative (NIfTT) [27] file format.

We used a framework named VesselVio [28] for the
vasculature analysis. VesselVio is an open-source applica-
tion that analyzes and visualizes vasculature datasets. The
VesselVio only supports binarized images. Therefore, the
first step of our preprocessing involves filtering non-binary
images. After filtering the data, we used VesselVio and gen-
erated graph files containing the vasculature’s metadata. In
a graph, we have nodes representing the branching and end
points of the vessels with the coordinates of (x, y, z). The
edges are the vessels with the features of average radius and
the vessel’s length. The metadata of the dataset after pre-
processing can be seen in Table 1.

The next step is to calculate bleeding probabilities. To
the best of our knowledge, there is no ready-to-use dataset
that classifies the bleeding probabilities of a vessel struc-
ture. Therefore, to be able to train our model, we generated
bleeding probability labels for training in a heuristic but
physiologically informed way by considering the diameter
and length of the vessel. For this calculation, we used PVR
[20]. PVR refers to the resistance that blood encounters
while flowing through vessels. Elevated PVR often leads
to increased blood pressure and eventually contributes to

Table 1 Dataset metadata

Dataset source # of images # of nodes # of edges
MSD 933 61,460 56,742
KiTS 487 46,166 49,172
AbdomenCT 288 87,748 100,129
CT-ORG 37 159,384 207,104

hypertension [29, 30]. High blood pressure (hypertension)
can weaken vessel walls and develop varices that are prone
to rupture and cause bleeding [31-33]. PVR is calculated by
the Hagen-Poiseuille Eq. (1) [29, 34, 35].

R =8In/xr* H

where R represents resistance, [ represents vessel length, #
represents blood viscosity, and » represents vessel radius.
As seen in Eq. (1), the resistance is directly proportional to
the ratio of length and fourth power of the radius. For each
node, we traverse its connected edges, i.e., vessels, and use
the mean length and radius of all neighbors in Eq. (1). This
yielded a resistance score for each node. We then normal-
ized these scores across each graph to a 0—1 range to obtain
a bleeding probability, p, for each node. Intuitively, nodes
connected to longer and thinner vessels receive p closer to
1 (higher risk), whereas nodes in short or wide vessels get
p near 0 (lower risk). Finally, these probability values were
attached as a node feature/label in the graph. After this step,
each graph’s nodes have features of (x, y, z, p), and each edge
has features of length and radius. This creates the training
data for our GNN. This method of labeling is a proxy; how-
ever, it provides a consistent, physiology-based way to label
a large dataset without manual annotation, while embedding
domain knowledge from Eq. (1) that the GNN can learn to
replicate or refine.

Graph Attention Network (GAT) Bleeding Prediction

We have a total of 1745 graphs, 354,758 nodes, and 413,147
edges to process. We used GNN for the node regression task.
The model tries to predict the probability of bleeding as a
node feature. Due to using different datasets from multi-
ple resources, the difference between the graphs in terms
of size is significantly large. To tackle this issue, the k-fold
cross-validation (k=10) [36] technique was used. k-fold
cross-validation shuffles the dataset randomly, splits it into
k-groups, and picks one group as the validation set and the
rest as the training set. This procedure is applied for each
fold. Hence, the model is trained by a k-different dataset par-
tition, overcoming the potential for overfitting and providing
more robust results.

For the prediction logic, we used GAT, a neural network
architecture designed to process graph-structured data.
Unlike traditional GCNs with fixed aggregation methods,
GATs use attention mechanisms to weigh the importance
of neighboring nodes adaptively and allow nodes to weigh
more on relevant neighbors and less on irrelevant ones
[37]. This model suits our dataset since the vessel maps
are not necessarily a single big graph with each node con-
nected. Instead, we might end up with many independ-
ent small graphs due to the nature of extracting from real

@ Springer



Journal of Imaging Informatics in Medicine

scanning images. Therefore, passing messages with rel-
evant neighbors while updating the nodes increases the
accuracy of our implementation.

As demonstrated in Fig. 2, our custom GAT model
architecture consists of two convolution layers designed
to leverage the graph attention mechanism. The first layer
takes the input dimension of node features, the dimension
of the hidden layer, and the number of attention heads,
and outputs by concatenating the results from different
attention heads. In this implementation, we employed four
attention heads with a hidden dimension of 64, a choice
derived from hyperparameter tuning. The use of four atten-
tion heads enhances the model’s capability to capture a
more comprehensive array of relationships between nodes.
Additionally, concatenation ensures that diverse patterns
identified by separate heads are effectively integrated and
passed to subsequent layers. The second convolution layer
processes the concatenated outputs, but instead of further
concatenation, it averages the contributions from each
attention head, effectively reducing the output dimension
to the desired output size. The forward function processes
input through the first GAT convolution layer and applies
the rectified linear unit (ReLLU) [38] activation function to
its output. This choice of activation function introduces
non-linearity, enabling the model to learn more complex
patterns. The activated outputs are then processed by the
second GAT convolution layer, which averages across
heads without applying an additional activation function,
allowing to stabilize the training process.

The training loop utilizes the Adam optimizer [39] and
mean squared error (MSE) loss function. The training data-
set is traversed for each epoch, a prediction is calculated with
MSE loss, and the loss is backpropagated to update the mod-
el’s weights. After the update, the validation dataset is used
to evaluate the model’s performance. Rather than employing
a straightforward train-test split, our methodology utilizes
k-fold cross-validation. This approach ensures the model is
evaluated across diverse data subsets, offering a more robust
indication of its generalizability and effectiveness.

Fig.2 Graph attention network

Early stopping is implemented to prevent overfitting. The
training halts if there is no improvement in validation loss
over a designated number of epochs, ensuring the model
is captured at its optimal state. Furthermore, weight decay
is incorporated with the Adam optimizer to introduce L2
regularization, discouraging overfitting by penalizing large
weights.

A critical aspect of our model is its detailed attention to
graph data, specifically through the handling of node fea-
tures, edge attributes, and edge indices. These elements are
crucial for the convolution layers, which leverage node fea-
tures and edge attributes alongside the structural information
provided by edge indices to adjust the attention mechanisms
dynamically. This approach allows the model to efficiently
learn from the intricate relationships present within graph
data, providing valuable insights into the underlying patterns
and interactions.

Hyperparameter Tuning and Evaluation Metrics
for the Designed Model

The goal is to predict continuous values representing the
chances of bleeding from 0 to 1. Therefore, our task is a
regression problem. MSE was used as the loss function
during training and evaluation. MSE is commonly used for
regression problems. It calculates the average of the squared
differences between the predicted values and the actual
ground truth values. During the training, the optimizer tries
to minimize MSE by tuning model parameters. Meanwhile,
during the evaluation, MSE quantitatively measures how
well the model predicts. Different hyperparameters, such as
the number of hidden layers, attention heads, and epochs,
were determined based on the comparison of the MSE loss
between the runs during the tuning. Based on preliminary
trials, we selected four attention heads and a 64-dimen-
sion hidden layer for the first GAT layer. We observed that
fewer heads reduced the model’s ability to capture complex
patterns, whereas more than four heads resulted in lower
accuracy while increasing complexity. Similarly, a hidden
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dimension of 64 offered a good balance, where fewer than
32 dimensions caused underfitting and 128 dimensions gave
marginal gains. We applied L2 weight regularization with
a weight decay of le™ to all GNN weights during train-
ing to prevent overfitting. We used a 0.001 learning rate
to ensure stable training. To validate the hyperparameter
selections, we carried out an ablation study in the “Ablation
Study: Hyperparameter Sensitivity” section. Additionally,
R-squared [40], also known as the coefficient of determina-
tion, was reported after each training. R-squared indicates
how well the model replicates the observed outcomes and
how well the model has the ability to capture variability.

Case Study: Intra-Abdominal Bleeding Virtual
Reality Simulator

We implemented a flexible framework that can quickly
adapt to other datasets as long as the images are segmented
and binarized. The model can also be easily tuned up with
different nodes and edge features. We implemented a VR-
based intra-abdominal bleeding scenario as a case study.
The scenario is built using Unity3D game engine (Unity
2022.3.21f1) and runs on a Meta Quest 2 head-mounted dis-
play for immersion. In the scene, there is an operating room
with an intubated patient with ready-to-use laparoscopic
instruments. This scene supports multiplayer functionality,
allowing multiple participants to simultaneously employ
various laparoscopic instruments such as a grabber, camera,
cauterizer, trocar, and suction. To enhance the realism of the
simulation, we have integrated high-fidelity organ models.
This abdominal anatomy model consists of the colon, spleen,
liver, stomach, pancreas, small intestines, gall bladder, bile
duct, and esophagus. Each organ has been designed with a
high mesh count along with detailed, high-resolution tex-
ture and normal maps to increase the fidelity of the simula-
tion. Another feature we have included in this simulator to
increase the realism is the custom-implemented bleeding
effects. To achieve the bleeding effects, we implemented a
custom shader by using the high-definition render pipeline
(HDRP) unlit shader graphs. In this shader graph, the dis-
tortion effect was used to mimic the waves of the liquid. To
create the distortion effect, the UV map of a 2D noise texture
was tiled and offset over time to provide a scrolled texture.
Then, the scrolled texture was added to the screen position,
and the exposure with scene color was used to create the
distortion effect. Moreover, the density of the distortion was
implemented as a variable to create different bleeding effects
for different scenarios.

The key link between the GNN model and the VR simula-
tor is through the vessel graph predictions. At the start of a
simulation session, our framework takes either a pre-loaded
patient scan or a user-selected CT scan, processes it into a
vessel graph, and then feeds it into the trained GNN model

to obtain predicted bleeding probabilities for each vessel
node. These probabilities are then used to probabilistically
determine which region will bleed during the simulation. In
practice, we select one or a few of the highest-risk nodes as
the bleeding source. By default, if no user scan is provided,
the simulator uses a representative vessel graph from our
dataset and the corresponding precomputed risk predictions.

The VR engine then maps the chosen vessel node(s) to
the 3D organ model. We achieve this by aligning the coor-
dinate system of the graph (which was originally in image
voxel space) with the coordinate system of the 3D patient
model in Unity. Since both are spatial representations of the
anatomy, this mapping is possible via a linear transform (we
calibrate using landmarks visible in the CT and the model,
such as organ boundaries). Once mapped, a node’s (x, y, z)
position corresponds to a location inside a specific organ in
the virtual patient. Sample mapping of vessel structure to an
organ is demonstrated in Fig. 3.

When the simulation scenario begins in the operation
room, they are given a brief on the patient’s history regard-
ing the results obtained from the framework, so that the
trainees will have insight into where the bleeding could
happen. The first indication of the scenario is seen when the
patient’s vital signs deteriorate, and vital monitors start to
alert. In each frame, the displays for vital signs, including a
large screen on the wall and a smaller one on the anesthesia

Fig.3 Vessel structure to 3D model mapping
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machine’s arm, are continuously updated by the pulse physi-
ology engine [41].

The GNN’s role is essentially behind the scenes, as it
determines where the bleed occurs. Each time the simula-
tion is reset or a new patient’s scan is loaded, a different
location or vessel can be chosen based on the risk profile,
making every scenario unique and challenging. By integrat-
ing the GNN in this manner, the simulator provides a real-
istic experience: the bleeding is not random but based on
an underlying risk model derived from real imaging data.
The simulator also logs whether the trainees manage to stop
the bleeding for training assessment purposes. When the
trainee(s) suspect internal bleeding based on changes in vital
signs in VR, they utilize laparoscopic instruments to identify
and control the bleeding. One of the trainees(s) deploys a
laparoscopic camera to visually inspect the abdominal cav-
ity and identify the source of the bleeding. Throughout the
procedure, two screens display real-time images captured
by the camera. Once the bleeding source is located, one of
the trainees(s) employs a suction device to extract the blood.
Both trainees’ perspectives during the simulation are pre-
sented in Fig. 4. The overview of the whole scene can be
seen in Fig. 5.

Results

In our comprehensive study, we employed GNN with GAT,
aiming to predict bleeding from real-life medical imaging
data. Acknowledging the sparse nature of real-life datasets,
we utilized a tenfold cross-validation strategy to enhance the
model’s robustness and generalizability. We standardized the
number of training epochs to 100 for each fold, implementing
early stopping with a patience parameter set to 10 epochs to
prevent overfitting. Optimization was achieved through the
Adam optimizer and L2 regularization, setting a weight decay
of 0.0001. The GAT architecture featured four attention heads
and 64 hidden dimensions, with a learning rate of 0.001.
The training process was evaluated over many epochs,
and the performance was assessed through the MSE loss
function for both training and validation datasets, determined

Fig.5 Overview of the virtual abdominal bleeding scene

by the k-fold cross-validation. Additionally, R-squared was
used as a metric to determine the proportion of variance in
the dependent variable that could be predicted from the inde-
pendent variable. Training occurred separately for each data-
set detailed in the “Data Pre-processing” section, including
a combined dataset approach, with parameters consistently
maintained across all instances for fair comparison. Follow-
ing each fold, parameters were reset to their original states,
with losses and R-squared values recorded at each epoch.

All model training and experiments were performed on an
Intel i7-11800H processor with NVIDIA GeForce RTX 3070
GPU (8 GB GDDR6) and 16 GB of RAM. Across all 10 folds
and all datasets, the total training time was 8 h. Throughout train-
ing, the GPU memory usage stayed below 4 GB. Also, we meas-
ured the model’s inference speed. After training, we measured
the trained GNN model’s inference speed for vessel graphs of
varying sizes. The trained GNN processed typical vessel graphs
and produced bleeding probabilities in 9-28 ms for graphs with
up to 500 nodes, 28-50 ms for graphs with 500-1000 nodes, and
50-130 ms for graphs with 1000-5000 nodes.

The next subsections report each dataset’s performance
along with the combined dataset’s overall performance, and
a hyperparameter sensitivity ablation study. Figures 6, 7, 8,
and 9 visually depict training and validation losses per epoch
for the most successful folds across datasets and R-squared
results for each dataset, illustrating the performance and
learning dynamics of our GNN model.

Fig.4 Clinicians’ perspective
during the simulation
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Performance of the MSD Dataset

The MSD dataset contained 933 graphs with a total of
61,460 nodes and 56,742 edges. These graphs had an aver-
age density of 0.0198, ranging from 0.0089 to 1.0 with a
standard deviation of 0.2751. Over tenfold cross-valida-
tion, the model achieved a mean training loss of 0.0098
and a validation loss of 0.0101 across all folds. The best
fold resulted in a notably lower training and validation
losses of 0.0050 and 0.0047 within 100 epochs, respec-
tively, as seen in Fig. 6. The average R-squared across
folds was 0.8963, with the best R-squared of 0.9216,
indicating that the model explained approximately 89.6
to 92.2% of the variance in bleeding probability labels.
Training on the MSD dataset concluded in an average
of 89.6 epochs, ranging from 39 to 100. The standard
deviation of losses across folds was low, with 0.0022 and
0.0024 for training and validation losses, respectively,
indicating stable learning.

Performance of the KiTS Dataset

The KiTS dataset had 487 graphs with 46,166 nodes and
49,172 edges. Compared to the MSD dataset, KiTS had
a higher average graph density of 0.0379, ranging from
0.0048 to 0.2857 with a standard deviation of 0.0352. The
model showed mean training and validation losses of 0.0079
and 0.0077, respectively. As shown in Fig. 6, the best fold
achieved a lower training loss of 0.0046 and validation loss
of 0.0048 over 66 epochs. R-squared scores were similarly
high, with a peak of 0.9147 and a mean of 0.8784 across
folds. Training was completed in an average of 86.4 epochs,
spanning from 43 to 100. The variability in losses was low,
and standard deviations for training and validation losses
were 0.0019 and 0.0016, respectively, showing stable, con-
sistent performance.

Performance of AbdomenCT Dataset

The AbdomenCT dataset had larger but sparser graphs.
This dataset consists of 288 graphs with 87,748 nodes and
100,129 edges, with an average density of 0.0103 (ranging
from 0.0012 to 0.0250 with a standard deviation of 0.0047).
According to Fig. 7, the GNN achieved mean training and
validation losses of 0.0039 and 0.0038, respectively, indi-
cating smaller error magnitudes. The best fold reduced the
training loss to 0.0017 and the validation loss to 0.0018 in
51 epochs. Standard deviations for training and validation
losses were 0.0014 and 0.0013, respectively. The average
R-squared was 0.8283, peaking at 0.8670, which was lower
than MSD and KiTS. On average, training took 89.1 epochs,
with a range from 48 to 100.

@ Springer

Performance of CT-ORG Dataset

With 37 graphs, 159,384 nodes, and 207,104 edges, the
extremely sparse CT-ORG dataset had an average density
of 0.0010 (ranging from 0.0001 to 0.0024 with a standard
deviation of 0.0005). This dataset was an outlier in that each
graph is a huge network covering many organs, but connec-
tions are sparse. The model’s performance on CT-ORG was
weaker relative to other sets with mean training and valida-
tion losses of 0.0034 and 0.0035, respectively, as illustrated
in Fig. 7. The standout fold showed a training loss of 0.0034
and a validation loss of 0.0026 in 71 epochs. The standard
deviations for training and validation losses were 0.0001
and 0.0011, respectively. The highest R-squared obtained
on CT-ORG was only 0.3859, and the average across folds
was 0.2700, showing that the model struggled to capture the
variability in this dataset. Training completed early, in an
average of 30.5 epochs, ranging from 13 to 71, as the model
would hit a plateau or start overfitting quickly.

Performance of Combined Dataset

We also evaluated the model on the combined dataset. Com-
bining all datasets resulted in 1708 graphs with 354,758
nodes and 413,147 edges. Training on the combined data
tests the model’s ability to generalize across all types of
anatomy and imaging sources. The average density of the
combined dataset was 0.1182 (ranging from 0.0001 to 1.0
with a standard deviation of 0.2196). For the combined data-
set, Fig. 8 shows that the mean training and validation losses
across all folds were strong with 0.0069 and 0.0074, respec-
tively. The best fold had a training loss of 0.0042 and a vali-
dation loss of 0.0040 in 87 epochs. The standard deviations
for training and validation losses across folds were 0.0011
and 0.0018, respectively. The best R-squared observed on
the combined validation was 0.9188 and a mean of 0.8600.
Training completed in an average of 76.9 epochs, spanning
50 to 100.

Ablation Study: Hyperparameter Sensitivity

To support our design choices and assess model robustness,
we performed a sensitivity analysis on two key hyperpa-
rameters: the number of attention heads in the GAT layers
and the use of L2 regularization weight decay. We used the
combined dataset for these experiments to ensure sufficient
data for evaluation. We trained variant models under differ-
ent settings and compared their performance using the same
tenfold cross-validation, with results averaged.

For attention heads, we tested models with two, four,
and eight heads in each GAT layer, adjusting the hidden
dimension per head such that the total output dimension
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of the first layer remained roughly constant at 256, to
keep model capacity comparable. As reported previously,
a four-head model was used for this study with an average
R-squared of 0.86 and stable training. With two heads,
the model converged but showed a small drop in accu-
racy to 0.82. Validation MSE increased by about 5-10%
relative to the four-head model. Also, we noticed slightly
higher variance in performance across folds, suggesting
two heads might under-represent some relationships. For
eight heads, the model’s performance was slightly lower
with an average R-squared of 0.85. However, training with
eight heads was 20-25% slower per epoch, and in 10% of
the time, it required more epochs to converge fully.

The second hyperparameter we performed a sensitivity
analysis on was L2 regularization. We examined the effect
of L2 regularization weight decay by training a model
with weight decay set to no regularization, compared
to 0.0001. Without L2 regularization, the final training
loss was 13.2% lower than the regularized model, but the
validation loss was 20% higher MSE than the regularized
model. The validation R-squared dropped to 0.80 on aver-
age. In 10% of the folds, the non-regularized model’s vali-
dation R-squared was between 0.70 and 0.78. The training
curves for the unregularized model often had the valida-
tion loss starting to increase after a certain number of
epochs, whereas the regularized model’s validation loss
stayed more aligned with training loss. This confirms the
model was overfitting when regularization was removed.

Discussion

The “Results” section showcases the performance of the
GNN:ss across different datasets, providing insights through
loss metrics and R-squared values that reflect the mod-
el’s accuracy and predictive power. In general, the model

demonstrated strong predictive accuracy across datasets with
consistently high R-squared values, showing its ability to
generalize patterns within varying vascular complexities.

The performance analysis across various datasets pro-
vides insights into how graph density, illustrated in Fig. 10,
and dataset characteristics influence model outcomes regard-
ing loss and R-squared values. The MSD dataset, which has
an average density of 0.0198, allowed the model to achieve
high predictive accuracy with the best R-squared value of
0.9216. Also, we observed a mean training loss of 0.0098
and a validation loss of 0.0101. These metrics indicate a
strong model performance, effectively balancing error mini-
mization and predictive accuracy. The moderate density of
the MSD dataset likely facilitates this by providing sufficient
information without overwhelming the model, a critical fac-
tor in achieving high generalization capabilities. MSD data-
set, despite the variability in graph complexity related to
different organ vessels, the model’s consistent performance
indicates it effectively leveraged sufficient connectivity to
generalize without overfitting.

Transitioning to the KiTS dataset, with its higher density
of 0.0379, we see a continuation of this trend with even
slightly improved loss values (mean training and validation
losses of 0.0079 and 0.0077, respectively) and a compara-
ble R-squared value peaking at 0.9147. This suggests that
increased graph density facilitated better relational feature
learning, enhancing the model’s ability to accurately predict
risk patterns within specialized anatomical regions.

The AbdomenCT and CT-ORG datasets presented unique
challenges due to their varying densities and complexities.
Despite its lower density of 0.0103, the AbdomenCT data-
set shows the lowest mean training and validation losses
compared to the MSD and KiTS datasets but with a slightly
lower R-squared value of 0.8670. This suggests that while
sparse datasets might improve error minimization, they
could limit the model’s ability to accurately capture and
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predict more complex patterns. Similarly, the CT-ORG
dataset, with the lowest density of 0.0010 among all data-
sets, shows good results in terms of training and validation
losses (0.0034 and 0.0035, respectively), but the R-squared
values significantly drop, with the best at only 0.3859. This
dataset suffered from overfitting and underfitting across all
folds. Its lower R-squared indicates the model’s inability to
capture complex patterns and variability. The GNN requires
structural information to effectively propagate and utilize
relational data, highlighting the importance of graph density
and connectivity in predictive modeling tasks.

In contrast, the combined dataset, with an average density
of 0.1182, benefits from the structural advantages and chal-
lenges of the individual datasets, resulting in mean training
and validation losses of 0.0069 and 0.0074, respectively, and
a robust best R-squared value of 0.9188. This demonstrates
the importance of combining diverse datasets to create a
rich, varied learning environment that mitigates the limita-
tions of individual, real-life, sparse datasets.

The ablation study further confirmed the robustness of
the chosen model architecture. Optimal performance was
achieved with four attention heads and L2 regularization,
demonstrating that moderate model complexity and appro-
priate regularization significantly improve predictive gener-
alizability and stability.

Overall, these results emphasize that while GNNs can
achieve strong performance in predicting bleeding risk from
anatomical graphs, their effectiveness is influenced signifi-
cantly by the density and structural properties of the data.
Although providing a GNN model that performs well on
various datasets is challenging, our proposed model showed
its capability to capture complex patterns with different char-
acteristics for different datasets. While high-density datasets
generally support better learning outcomes, our approach
shows promising results for extremely low densities. This
approach mitigates the challenges encountered with real-life
datasets. In our current workflow, bleeding risk prediction
is performed once prior to the start of the simulation for
each patient-specific anatomy. Therefore, while our GNN
model is capable of near real-time inference on modern
hardware, real-time execution is not strictly required for end-
user experience in this application. The critical factors are
accuracy and reproducibility of the risk assessment, which
enable realistic and safe simulation scenarios. However, our
framework encountered some limitations. During the pre-
processing stage, VesselVio, which was used to extract ves-
sel structure to graphs, only accepts pre-segmented binary
CT and MRI scan images. Therefore, we had to eliminate
non-binary images. This limited the number of samples we
could use during the training. Another limitation of our
current approach is the reliance on the Hagen—Poiseuille
assumption, which considers ideal cylindrical vessels and
steady flow. Real human vasculature is more complex

@ Springer

(non-uniform cross-sections, branching flows, etc.). While
our risk labeling heuristic captures the riskier intuition, it
may not account for other factors like vessel wall integrity or
surrounding tissue support. This means our GNN is learning
a simplified representation of bleeding risk. This is accept-
able for simulation training as we are not predicting actual
patient outcomes, but it means the model might not directly
translate to a clinical diagnostic tool without further valida-
tion or augmentation. In the future, incorporating patient-
specific variables such as blood pressure and coagulopathy
status into the model could make the risk predictions more
personalized.

Conclusion

This study demonstrates the application of GNNs for pre-
dicting internal bleeding risk from medical imaging data
and highlights the significant potential of this approach in
enhancing the realism and effectiveness of surgical simu-
lations. Our framework utilizes GATs for node regression
tasks within the vascular structures derived from real-life
CT and MRI scan images. The evaluation of our model’s
performance, conducted through comprehensive testing and
validated by a tenfold cross-validation, underscores the accu-
racy and reliability of our framework.

The combination of various datasets with different charac-
teristics, 1708 graphs with over 354,748 nodes and 413,147
edges, demonstrated promising results with mean training
loss and validation loss of 0.0069 and 0.0074, respectively.
Furthermore, the high R-squared score of 0.9188 reflects
our model’s accuracy in predicting bleeding and its capac-
ity to generalize across diverse medical imaging datasets.
Our model’s ability to adapt to different datasets is essential
for developing surgical simulations that can be applied to
various clinical scenarios. Moreover, the minimal deviation
between training and validation losses highlights the model’s
stability and predictive consistency, which are crucial for its
implementation in real-world applications.

Additionally, as a case study, we developed a VR simula-
tor for an intra-abdominal bleeding scenario to demonstrate
the practical integration of our GNN predictions. The inte-
gration of GAT bleeding probabilities within an immersive
VR environment provided a unique opportunity to train and
test surgical skills accurately in a risk-free environment. This
connection of Al-based risk modeling with interactive simu-
lation allowed each run of the simulator to present a slightly
different scenario driven by patient-specific data, thereby
increasing the training value.

The potential for further advancement of the model to
include more complex bleeding scenarios, coupled with
the integration of real-time patient data or sensor feed-
back into the model, presents a promising avenue for
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creating engaging, effective, and realistic medical simula-
tions. Another promising avenue is to validate and refine
the model using actual clinical cases of hemorrhage, which
could improve its fidelity beyond the current heuristic-based
labeling. Even in its present form, our framework presents
a promising step toward creating engaging, effective, and
data-driven realistic medical simulations. It illustrates how
vascular risk predictions from medical imaging analysis can
directly inform simulation training, ultimately bridging the
gap between computational modeling and hands-on medical
education.
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