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Abstract
This study presents a novel approach using graph neural networks to predict the risk of internal bleeding using vessel maps 
derived from patient CT and MRI scans, aimed at enhancing the realism of surgical simulators for emergency scenarios such 
as trauma, where rapid detection of internal bleeding can be lifesaving. First, medical images are segmented and converted 
into graph representations of the vasculature, where nodes represent vessel branching points with spatial coordinates and 
edges encode vessel features such as length and radius. Due to no existing dataset directly labeling bleeding risks, we cal-
culate the bleeding probability for each vessel node using a physics-based heuristic, peripheral vascular resistance via the 
Hagen-Poiseuille equation. A graph attention network is then trained to regress these probabilities, effectively learning to 
predict hemorrhage risk from the graph-structured imaging data. The model is trained using a tenfold cross-validation on a 
combined dataset of 1708 vessel graphs extracted from four public image datasets (MSD, KiTS, AbdomenCT, CT-ORG) with 
optimization via the Adam optimizer, mean squared error loss, early stopping, and L2 regularization. Our model achieves 
a mean R-squared of 0.86, reaching up to 0.9188 in optimal configurations and low mean training and validation losses of 
0.0069 and 0.0074, respectively, in predicting bleeding risk, with higher performance on well-connected vascular graphs. 
Finally, we integrate the trained model into an immersive virtual reality environment to simulate intra-abdominal bleed-
ing scenarios for immersive surgical training. The model demonstrates robust predictive performance despite the inherent 
sparsity of real-life datasets.

Keywords  Bleeding prediction · Graph neural network · Surgical simulator · Virtual reality · Medical imaging · Trauma 
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Introduction

Internal bleeding, hemorrhage, in trauma patients is a life-
threatening condition that must be identified and managed 
rapidly [1, 2]. Statistics show that trauma is the leading 
cause of death with over five million people worldwide 
fatalities due to injuries each year [3]. Massive hemorrhage 
is the cause of death in 40% of trauma deaths and is con-
sidered one of the most life-threatening complications of 

injuries [2, 4]. Despite its fatal consequences, hemorrhage 
is treatable once they are detected at the early stages of the 
injury. Therefore, most of the trauma-based deaths are pre-
ventable with appropriate intervention [4–7]. This has moti-
vated the development of advanced training tools, including 
high-fidelity virtual reality (VR) surgical simulators to help 
clinicians practice diagnosing and treating internal bleeding 
in a risk-free environment [8–10]. However, current simula-
tors typically rely on simplistic or pre-programmed models 
of bleeding, which may not capture the patient-specific vari-
ability seen in real-life hemorrhage cases. There is a need for 
simulation approaches that use actual patient data to drive 
realistic bleeding behavior, thereby improving training real-
ism and effectiveness.

Meanwhile, the field of medical imaging informatics has 
produced repositories of clinical imaging data, such as CT 
and MRI scans, and increasingly powerful AI methods to 
analyze them. In particular, deep learning has shown great 
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promise in interpreting medical images for diagnosis and 
risk stratification [11]. Graph neural networks (GNNs) are 
an emerging class of deep learning models that operate on 
graph-structured data [12, 13] and are well-suited for repre-
senting anatomical networks such as blood vessel structures. 
Unlike convolutional neural networks (CNNs), which excel 
at image pixel grids, GNNs can capture complex relational 
information by modeling anatomical entities as nodes and 
their connections as edges. GNN approaches have been 
applied successfully in a variety of biomedical contexts, for 
example, to analyze brain connectivity graphs in fMRI data 
[14], to predict patient diagnoses or outcomes from rela-
tional health data [15], and to model molecular or drug inter-
action networks [16–18]. These works suggest that GNNs 
can extract meaningful patterns from graph representations 
of medical data. However, to our knowledge, GNNs have 
not yet been utilized to predict acute pathological events like 
hemorrhage using medical imaging data. Recent research 
has begun to bridge physiological modeling with machine 
learning, using a physics-informed GNN to predict blood 
flow and pressure in cerebral vessels [19], but such methods 
have not been extended to simulating emergency scenarios 
or integrated into training tools.

In this study, we propose a unique framework that com-
bines imaging informatics and GNNs to predict internal 
bleeding risks and using those predictions in a VR simula-
tor. Our approach begins with extracting detailed maps of 
blood vessels from computed tomography (CT) and mag-
netic resonance imaging (MRI) scans of the abdomen. Then, 
we convert the vessel maps into graphs and compute the 
bleeding probability of each node based on peripheral vascu-
lar resistance (PVR) [20]. By mapping the computed resist-
ance values to a probability scale, we obtain a plausible risk 

score for hemorrhage at each location. These scores serve 
as ground truth for training our GNN model. We employ 
a graph attention network (GAT), a type of GNN that can 
weigh the importance of neighboring nodes’ features to pre-
dict the bleeding probability at each node given the graph of 
the entire vessel tree. The GAT is trained and validated on 
a combination of real medical imaging datasets with 1708 
total graphs.

We integrate the trained GNN into a VR surgical sim-
ulator to create an interactive training scenario for intra-
abdominal bleeding (hemoperitoneum). In our simulator, 
the GNN’s output, predicted high-risk vessels, is used to 
determine where and when bleeding should occur in the vir-
tual patient model. This means each simulation run can be 
personalized to a patient’s anatomy and injury risk, which 
is a substantial improvement over a fixed, scripted scenario. 
To our knowledge, this is the first time that imaging-derived 
AI predictions have been used to drive a real-time surgical 
simulation. Prior works on VR surgical training have imple-
mented bleeding effects with graphical techniques [21], but 
without using patient-specific data or predictive analytics. 
By bridging medical image analysis with simulation, our 
framework allows trainees to encounter more realistic and 
varied hemorrhage scenarios, informed by actual clinical 
data.

Materials and Methods

Our framework, as depicted in Fig. 1, consists of four major 
components: a) pre-processing medical image datasets con-
sisting of binary segmented CT and MRI scans into graphs 
that encapsulate the vascular tree extracted from images 

Fig. 1   System diagram of the framework
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where nodes are branching points with (x, y, z) coordinates 
metadata and edges are vessels with several features such 
as radius and length of the vessel; b) a GNN-based node 
regression model that predicts the bleeding probability at 
each vessel node; c) evaluation of the model’s performance 
considering training, validation losses, and R-squared; d) 
deployment of the framework into a virtual scene by build-
ing a bleeding-based medical scenario, in our case, intra-
abdominal bleeding [22].

Data Pre‑processing

The first part of our framework pipeline is to find appropri-
ate CT and MRI scan images and process them. We have 
used public datasets from the Medical Segmentation Decath-
lon (MSD) [23], Kidney Tumor Segmentation Challenge 
(KiTS23) [24], AbdomenCT-1 K [25], and CT-ORG [26]. 
From these, we extracted the blood vessels in organs and the 
abdominal cavity by selecting the segmentation labels cor-
responding to vascular structures. All images retrieved from 
the datasets are encoded in the Neuroimaging Informatics 
Technology Initiative (NIfTI) [27] file format.

We used a framework named VesselVio [28] for the 
vasculature analysis. VesselVio is an open-source applica-
tion that analyzes and visualizes vasculature datasets. The 
VesselVio only supports binarized images. Therefore, the 
first step of our preprocessing involves filtering non-binary 
images. After filtering the data, we used VesselVio and gen-
erated graph files containing the vasculature’s metadata. In 
a graph, we have nodes representing the branching and end 
points of the vessels with the coordinates of (x, y, z). The 
edges are the vessels with the features of average radius and 
the vessel’s length. The metadata of the dataset after pre-
processing can be seen in Table 1.

The next step is to calculate bleeding probabilities. To 
the best of our knowledge, there is no ready-to-use dataset 
that classifies the bleeding probabilities of a vessel struc-
ture. Therefore, to be able to train our model, we generated 
bleeding probability labels for training in a heuristic but 
physiologically informed way by considering the diameter 
and length of the vessel. For this calculation, we used PVR 
[20]. PVR refers to the resistance that blood encounters 
while flowing through vessels. Elevated PVR often leads 
to increased blood pressure and eventually contributes to 

hypertension [29, 30]. High blood pressure (hypertension) 
can weaken vessel walls and develop varices that are prone 
to rupture and cause bleeding [31–33]. PVR is calculated by 
the Hagen-Poiseuille Eq. (1) [29, 34, 35].

where R represents resistance, l represents vessel length, � 
represents blood viscosity, and r represents vessel radius. 
As seen in Eq. (1), the resistance is directly proportional to 
the ratio of length and fourth power of the radius. For each 
node, we traverse its connected edges, i.e., vessels, and use 
the mean length and radius of all neighbors in Eq. (1). This 
yielded a resistance score for each node. We then normal-
ized these scores across each graph to a 0–1 range to obtain 
a bleeding probability, p, for each node. Intuitively, nodes 
connected to longer and thinner vessels receive p closer to 
1 (higher risk), whereas nodes in short or wide vessels get 
p near 0 (lower risk). Finally, these probability values were 
attached as a node feature/label in the graph. After this step, 
each graph’s nodes have features of (x, y, z, p), and each edge 
has features of length and radius. This creates the training 
data for our GNN. This method of labeling is a proxy; how-
ever, it provides a consistent, physiology-based way to label 
a large dataset without manual annotation, while embedding 
domain knowledge from Eq. (1) that the GNN can learn to 
replicate or refine.

Graph Attention Network (GAT) Bleeding Prediction

We have a total of 1745 graphs, 354,758 nodes, and 413,147 
edges to process. We used GNN for the node regression task. 
The model tries to predict the probability of bleeding as a 
node feature. Due to using different datasets from multi-
ple resources, the difference between the graphs in terms 
of size is significantly large. To tackle this issue, the k-fold 
cross-validation (k = 10) [36] technique was used. k-fold 
cross-validation shuffles the dataset randomly, splits it into 
k-groups, and picks one group as the validation set and the 
rest as the training set. This procedure is applied for each 
fold. Hence, the model is trained by a k-different dataset par-
tition, overcoming the potential for overfitting and providing 
more robust results.

For the prediction logic, we used GAT, a neural network 
architecture designed to process graph-structured data. 
Unlike traditional GCNs with fixed aggregation methods, 
GATs use attention mechanisms to weigh the importance 
of neighboring nodes adaptively and allow nodes to weigh 
more on relevant neighbors and less on irrelevant ones 
[37]. This model suits our dataset since the vessel maps 
are not necessarily a single big graph with each node con-
nected. Instead, we might end up with many independ-
ent small graphs due to the nature of extracting from real 

(1)R = 8l�∕�r4

Table 1   Dataset metadata

Dataset source # of images # of nodes # of edges

MSD 933 61,460 56,742
KiTS 487 46,166 49,172
AbdomenCT 288 87,748 100,129
CT-ORG 37 159,384 207,104
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scanning images. Therefore, passing messages with rel-
evant neighbors while updating the nodes increases the 
accuracy of our implementation.

As demonstrated in Fig. 2, our custom GAT model 
architecture consists of two convolution layers designed 
to leverage the graph attention mechanism. The first layer 
takes the input dimension of node features, the dimension 
of the hidden layer, and the number of attention heads, 
and outputs by concatenating the results from different 
attention heads. In this implementation, we employed four 
attention heads with a hidden dimension of 64, a choice 
derived from hyperparameter tuning. The use of four atten-
tion heads enhances the model’s capability to capture a 
more comprehensive array of relationships between nodes. 
Additionally, concatenation ensures that diverse patterns 
identified by separate heads are effectively integrated and 
passed to subsequent layers. The second convolution layer 
processes the concatenated outputs, but instead of further 
concatenation, it averages the contributions from each 
attention head, effectively reducing the output dimension 
to the desired output size. The forward function processes 
input through the first GAT convolution layer and applies 
the rectified linear unit (ReLU) [38] activation function to 
its output. This choice of activation function introduces 
non-linearity, enabling the model to learn more complex 
patterns. The activated outputs are then processed by the 
second GAT convolution layer, which averages across 
heads without applying an additional activation function, 
allowing to stabilize the training process.

The training loop utilizes the Adam optimizer [39] and 
mean squared error (MSE) loss function. The training data-
set is traversed for each epoch, a prediction is calculated with 
MSE loss, and the loss is backpropagated to update the mod-
el’s weights. After the update, the validation dataset is used 
to evaluate the model’s performance. Rather than employing 
a straightforward train-test split, our methodology utilizes 
k-fold cross-validation. This approach ensures the model is 
evaluated across diverse data subsets, offering a more robust 
indication of its generalizability and effectiveness.

Early stopping is implemented to prevent overfitting. The 
training halts if there is no improvement in validation loss 
over a designated number of epochs, ensuring the model 
is captured at its optimal state. Furthermore, weight decay 
is incorporated with the Adam optimizer to introduce L2 
regularization, discouraging overfitting by penalizing large 
weights.

A critical aspect of our model is its detailed attention to 
graph data, specifically through the handling of node fea-
tures, edge attributes, and edge indices. These elements are 
crucial for the convolution layers, which leverage node fea-
tures and edge attributes alongside the structural information 
provided by edge indices to adjust the attention mechanisms 
dynamically. This approach allows the model to efficiently 
learn from the intricate relationships present within graph 
data, providing valuable insights into the underlying patterns 
and interactions.

Hyperparameter Tuning and Evaluation Metrics 
for the Designed Model

The goal is to predict continuous values representing the 
chances of bleeding from 0 to 1. Therefore, our task is a 
regression problem. MSE was used as the loss function 
during training and evaluation. MSE is commonly used for 
regression problems. It calculates the average of the squared 
differences between the predicted values and the actual 
ground truth values. During the training, the optimizer tries 
to minimize MSE by tuning model parameters. Meanwhile, 
during the evaluation, MSE quantitatively measures how 
well the model predicts. Different hyperparameters, such as 
the number of hidden layers, attention heads, and epochs, 
were determined based on the comparison of the MSE loss 
between the runs during the tuning. Based on preliminary 
trials, we selected four attention heads and a 64-dimen-
sion hidden layer for the first GAT layer. We observed that 
fewer heads reduced the model’s ability to capture complex 
patterns, whereas more than four heads resulted in lower 
accuracy while increasing complexity. Similarly, a hidden 

Fig. 2   Graph attention network 
architecture
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dimension of 64 offered a good balance, where fewer than 
32 dimensions caused underfitting and 128 dimensions gave 
marginal gains. We applied L2 weight regularization with 
a weight decay of 1e−4 to all GNN weights during train-
ing to prevent overfitting. We used a 0.001 learning rate 
to ensure stable training. To validate the hyperparameter 
selections, we carried out an ablation study in the “Ablation 
Study: Hyperparameter Sensitivity” section. Additionally, 
R-squared [40], also known as the coefficient of determina-
tion, was reported after each training. R-squared indicates 
how well the model replicates the observed outcomes and 
how well the model has the ability to capture variability.

Case Study: Intra‑Abdominal Bleeding Virtual 
Reality Simulator

We implemented a flexible framework that can quickly 
adapt to other datasets as long as the images are segmented 
and binarized. The model can also be easily tuned up with 
different nodes and edge features. We implemented a VR-
based intra-abdominal bleeding scenario as a case study. 
The scenario is built using Unity3D game engine (Unity 
2022.3.21f1) and runs on a Meta Quest 2 head-mounted dis-
play for immersion. In the scene, there is an operating room 
with an intubated patient with ready-to-use laparoscopic 
instruments. This scene supports multiplayer functionality, 
allowing multiple participants to simultaneously employ 
various laparoscopic instruments such as a grabber, camera, 
cauterizer, trocar, and suction. To enhance the realism of the 
simulation, we have integrated high-fidelity organ models. 
This abdominal anatomy model consists of the colon, spleen, 
liver, stomach, pancreas, small intestines, gall bladder, bile 
duct, and esophagus. Each organ has been designed with a 
high mesh count along with detailed, high-resolution tex-
ture and normal maps to increase the fidelity of the simula-
tion. Another feature we have included in this simulator to 
increase the realism is the custom-implemented bleeding 
effects. To achieve the bleeding effects, we implemented a 
custom shader by using the high-definition render pipeline 
(HDRP) unlit shader graphs. In this shader graph, the dis-
tortion effect was used to mimic the waves of the liquid. To 
create the distortion effect, the UV map of a 2D noise texture 
was tiled and offset over time to provide a scrolled texture. 
Then, the scrolled texture was added to the screen position, 
and the exposure with scene color was used to create the 
distortion effect. Moreover, the density of the distortion was 
implemented as a variable to create different bleeding effects 
for different scenarios.

The key link between the GNN model and the VR simula-
tor is through the vessel graph predictions. At the start of a 
simulation session, our framework takes either a pre-loaded 
patient scan or a user-selected CT scan, processes it into a 
vessel graph, and then feeds it into the trained GNN model 

to obtain predicted bleeding probabilities for each vessel 
node. These probabilities are then used to probabilistically 
determine which region will bleed during the simulation. In 
practice, we select one or a few of the highest-risk nodes as 
the bleeding source. By default, if no user scan is provided, 
the simulator uses a representative vessel graph from our 
dataset and the corresponding precomputed risk predictions.

The VR engine then maps the chosen vessel node(s) to 
the 3D organ model. We achieve this by aligning the coor-
dinate system of the graph (which was originally in image 
voxel space) with the coordinate system of the 3D patient 
model in Unity. Since both are spatial representations of the 
anatomy, this mapping is possible via a linear transform (we 
calibrate using landmarks visible in the CT and the model, 
such as organ boundaries). Once mapped, a node’s (x, y, z) 
position corresponds to a location inside a specific organ in 
the virtual patient. Sample mapping of vessel structure to an 
organ is demonstrated in Fig. 3.

When the simulation scenario begins in the operation 
room, they are given a brief on the patient’s history regard-
ing the results obtained from the framework, so that the 
trainees will have insight into where the bleeding could 
happen. The first indication of the scenario is seen when the 
patient’s vital signs deteriorate, and vital monitors start to 
alert. In each frame, the displays for vital signs, including a 
large screen on the wall and a smaller one on the anesthesia 

Fig. 3   Vessel structure to 3D model mapping
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machine’s arm, are continuously updated by the pulse physi-
ology engine [41].

The GNN’s role is essentially behind the scenes, as it 
determines where the bleed occurs. Each time the simula-
tion is reset or a new patient’s scan is loaded, a different 
location or vessel can be chosen based on the risk profile, 
making every scenario unique and challenging. By integrat-
ing the GNN in this manner, the simulator provides a real-
istic experience: the bleeding is not random but based on 
an underlying risk model derived from real imaging data. 
The simulator also logs whether the trainees manage to stop 
the bleeding for training assessment purposes. When the 
trainee(s) suspect internal bleeding based on changes in vital 
signs in VR, they utilize laparoscopic instruments to identify 
and control the bleeding. One of the trainees(s) deploys a 
laparoscopic camera to visually inspect the abdominal cav-
ity and identify the source of the bleeding. Throughout the 
procedure, two screens display real-time images captured 
by the camera. Once the bleeding source is located, one of 
the trainees(s) employs a suction device to extract the blood. 
Both trainees’ perspectives during the simulation are pre-
sented in Fig. 4. The overview of the whole scene can be 
seen in Fig. 5.

Results

In our comprehensive study, we employed GNN with GAT, 
aiming to predict bleeding from real-life medical imaging 
data. Acknowledging the sparse nature of real-life datasets, 
we utilized a tenfold cross-validation strategy to enhance the 
model’s robustness and generalizability. We standardized the 
number of training epochs to 100 for each fold, implementing 
early stopping with a patience parameter set to 10 epochs to 
prevent overfitting. Optimization was achieved through the 
Adam optimizer and L2 regularization, setting a weight decay 
of 0.0001. The GAT architecture featured four attention heads 
and 64 hidden dimensions, with a learning rate of 0.001.

The training process was evaluated over many epochs, 
and the performance was assessed through the MSE loss 
function for both training and validation datasets, determined 

by the k-fold cross-validation. Additionally, R-squared was 
used as a metric to determine the proportion of variance in 
the dependent variable that could be predicted from the inde-
pendent variable. Training occurred separately for each data-
set detailed in the “Data Pre-processing” section, including 
a combined dataset approach, with parameters consistently 
maintained across all instances for fair comparison. Follow-
ing each fold, parameters were reset to their original states, 
with losses and R-squared values recorded at each epoch.

All model training and experiments were performed on an 
Intel i7-11800H processor with NVIDIA GeForce RTX 3070 
GPU (8 GB GDDR6) and 16 GB of RAM. Across all 10 folds 
and all datasets, the total training time was 8 h. Throughout train-
ing, the GPU memory usage stayed below 4 GB. Also, we meas-
ured the model’s inference speed. After training, we measured 
the trained GNN model’s inference speed for vessel graphs of 
varying sizes. The trained GNN processed typical vessel graphs 
and produced bleeding probabilities in 9–28 ms for graphs with 
up to 500 nodes, 28–50 ms for graphs with 500–1000 nodes, and 
50–130 ms for graphs with 1000–5000 nodes.

The next subsections report each dataset’s performance 
along with the combined dataset’s overall performance, and 
a hyperparameter sensitivity ablation study. Figures 6, 7, 8, 
and 9 visually depict training and validation losses per epoch 
for the most successful folds across datasets and R-squared 
results for each dataset, illustrating the performance and 
learning dynamics of our GNN model.

Fig. 4   Clinicians’ perspective 
during the simulation

Fig. 5   Overview of the virtual abdominal bleeding scene
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Fig. 6   Graph attention network performance for MSD and KiTS datasets

Fig. 7   Graph attention network performance for AbdomenCT and CT-ORG datasets

Fig. 8   Graph attention network performance for the combined dataset Fig. 9   Highest R-squared values achieved across different datasets
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Performance of the MSD Dataset

The MSD dataset contained 933 graphs with a total of 
61,460 nodes and 56,742 edges. These graphs had an aver-
age density of 0.0198, ranging from 0.0089 to 1.0 with a 
standard deviation of 0.2751. Over tenfold cross-valida-
tion, the model achieved a mean training loss of 0.0098 
and a validation loss of 0.0101 across all folds. The best 
fold resulted in a notably lower training and validation 
losses of 0.0050 and 0.0047 within 100 epochs, respec-
tively, as seen in Fig. 6. The average R-squared across 
folds was 0.8963, with the best R-squared of 0.9216, 
indicating that the model explained approximately 89.6 
to 92.2% of the variance in bleeding probability labels. 
Training on the MSD dataset concluded in an average 
of 89.6 epochs, ranging from 39 to 100. The standard 
deviation of losses across folds was low, with 0.0022 and 
0.0024 for training and validation losses, respectively, 
indicating stable learning.

Performance of the KiTS Dataset

The KiTS dataset had 487 graphs with 46,166 nodes and 
49,172 edges. Compared to the MSD dataset, KiTS had 
a higher average graph density of 0.0379, ranging from 
0.0048 to 0.2857 with a standard deviation of 0.0352. The 
model showed mean training and validation losses of 0.0079 
and 0.0077, respectively. As shown in Fig. 6, the best fold 
achieved a lower training loss of 0.0046 and validation loss 
of 0.0048 over 66 epochs. R-squared scores were similarly 
high, with a peak of 0.9147 and a mean of 0.8784 across 
folds. Training was completed in an average of 86.4 epochs, 
spanning from 43 to 100. The variability in losses was low, 
and standard deviations for training and validation losses 
were 0.0019 and 0.0016, respectively, showing stable, con-
sistent performance.

Performance of AbdomenCT Dataset

The AbdomenCT dataset had larger but sparser graphs. 
This dataset consists of 288 graphs with 87,748 nodes and 
100,129 edges, with an average density of 0.0103 (ranging 
from 0.0012 to 0.0250 with a standard deviation of 0.0047). 
According to Fig. 7, the GNN achieved mean training and 
validation losses of 0.0039 and 0.0038, respectively, indi-
cating smaller error magnitudes. The best fold reduced the 
training loss to 0.0017 and the validation loss to 0.0018 in 
51 epochs. Standard deviations for training and validation 
losses were 0.0014 and 0.0013, respectively. The average 
R-squared was 0.8283, peaking at 0.8670, which was lower 
than MSD and KiTS. On average, training took 89.1 epochs, 
with a range from 48 to 100.

Performance of CT‑ORG Dataset

With 37 graphs, 159,384 nodes, and 207,104 edges, the 
extremely sparse CT-ORG dataset had an average density 
of 0.0010 (ranging from 0.0001 to 0.0024 with a standard 
deviation of 0.0005). This dataset was an outlier in that each 
graph is a huge network covering many organs, but connec-
tions are sparse. The model’s performance on CT-ORG was 
weaker relative to other sets with mean training and valida-
tion losses of 0.0034 and 0.0035, respectively, as illustrated 
in Fig. 7. The standout fold showed a training loss of 0.0034 
and a validation loss of 0.0026 in 71 epochs. The standard 
deviations for training and validation losses were 0.0001 
and 0.0011, respectively. The highest R-squared obtained 
on CT-ORG was only 0.3859, and the average across folds 
was 0.2700, showing that the model struggled to capture the 
variability in this dataset. Training completed early, in an 
average of 30.5 epochs, ranging from 13 to 71, as the model 
would hit a plateau or start overfitting quickly.

Performance of Combined Dataset

We also evaluated the model on the combined dataset. Com-
bining all datasets resulted in 1708 graphs with 354,758 
nodes and 413,147 edges. Training on the combined data 
tests the model’s ability to generalize across all types of 
anatomy and imaging sources. The average density of the 
combined dataset was 0.1182 (ranging from 0.0001 to 1.0 
with a standard deviation of 0.2196). For the combined data-
set, Fig. 8 shows that the mean training and validation losses 
across all folds were strong with 0.0069 and 0.0074, respec-
tively. The best fold had a training loss of 0.0042 and a vali-
dation loss of 0.0040 in 87 epochs. The standard deviations 
for training and validation losses across folds were 0.0011 
and 0.0018, respectively. The best R-squared observed on 
the combined validation was 0.9188 and a mean of 0.8600. 
Training completed in an average of 76.9 epochs, spanning 
50 to 100.

Ablation Study: Hyperparameter Sensitivity

To support our design choices and assess model robustness, 
we performed a sensitivity analysis on two key hyperpa-
rameters: the number of attention heads in the GAT layers 
and the use of L2 regularization weight decay. We used the 
combined dataset for these experiments to ensure sufficient 
data for evaluation. We trained variant models under differ-
ent settings and compared their performance using the same 
tenfold cross-validation, with results averaged.

For attention heads, we tested models with two, four, 
and eight heads in each GAT layer, adjusting the hidden 
dimension per head such that the total output dimension 
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of the first layer remained roughly constant at 256, to 
keep model capacity comparable. As reported previously, 
a four-head model was used for this study with an average 
R-squared of 0.86 and stable training. With two heads, 
the model converged but showed a small drop in accu-
racy to 0.82. Validation MSE increased by about 5–10% 
relative to the four-head model. Also, we noticed slightly 
higher variance in performance across folds, suggesting 
two heads might under-represent some relationships. For 
eight heads, the model’s performance was slightly lower 
with an average R-squared of 0.85. However, training with 
eight heads was 20–25% slower per epoch, and in 10% of 
the time, it required more epochs to converge fully.

The second hyperparameter we performed a sensitivity 
analysis on was L2 regularization. We examined the effect 
of L2 regularization weight decay by training a model 
with weight decay set to no regularization, compared 
to 0.0001. Without L2 regularization, the final training 
loss was 13.2% lower than the regularized model, but the 
validation loss was 20% higher MSE than the regularized 
model. The validation R-squared dropped to 0.80 on aver-
age. In 10% of the folds, the non-regularized model’s vali-
dation R-squared was between 0.70 and 0.78. The training 
curves for the unregularized model often had the valida-
tion loss starting to increase after a certain number of 
epochs, whereas the regularized model’s validation loss 
stayed more aligned with training loss. This confirms the 
model was overfitting when regularization was removed.

Discussion

The “Results” section showcases the performance of the 
GNNs across different datasets, providing insights through 
loss metrics and R-squared values that reflect the mod-
el’s accuracy and predictive power. In general, the model 

demonstrated strong predictive accuracy across datasets with 
consistently high R-squared values, showing its ability to 
generalize patterns within varying vascular complexities.

The performance analysis across various datasets pro-
vides insights into how graph density, illustrated in Fig. 10, 
and dataset characteristics influence model outcomes regard-
ing loss and R-squared values. The MSD dataset, which has 
an average density of 0.0198, allowed the model to achieve 
high predictive accuracy with the best R-squared value of 
0.9216. Also, we observed a mean training loss of 0.0098 
and a validation loss of 0.0101. These metrics indicate a 
strong model performance, effectively balancing error mini-
mization and predictive accuracy. The moderate density of 
the MSD dataset likely facilitates this by providing sufficient 
information without overwhelming the model, a critical fac-
tor in achieving high generalization capabilities. MSD data-
set, despite the variability in graph complexity related to 
different organ vessels, the model’s consistent performance 
indicates it effectively leveraged sufficient connectivity to 
generalize without overfitting.

Transitioning to the KiTS dataset, with its higher density 
of 0.0379, we see a continuation of this trend with even 
slightly improved loss values (mean training and validation 
losses of 0.0079 and 0.0077, respectively) and a compara-
ble R-squared value peaking at 0.9147. This suggests that 
increased graph density facilitated better relational feature 
learning, enhancing the model’s ability to accurately predict 
risk patterns within specialized anatomical regions.

The AbdomenCT and CT-ORG datasets presented unique 
challenges due to their varying densities and complexities. 
Despite its lower density of 0.0103, the AbdomenCT data-
set shows the lowest mean training and validation losses 
compared to the MSD and KiTS datasets but with a slightly 
lower R-squared value of 0.8670. This suggests that while 
sparse datasets might improve error minimization, they 
could limit the model’s ability to accurately capture and 

Fig. 10   Graph density comparison across datasets
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predict more complex patterns. Similarly, the CT-ORG 
dataset, with the lowest density of 0.0010 among all data-
sets, shows good results in terms of training and validation 
losses (0.0034 and 0.0035, respectively), but the R-squared 
values significantly drop, with the best at only 0.3859. This 
dataset suffered from overfitting and underfitting across all 
folds. Its lower R-squared indicates the model’s inability to 
capture complex patterns and variability. The GNN requires 
structural information to effectively propagate and utilize 
relational data, highlighting the importance of graph density 
and connectivity in predictive modeling tasks.

In contrast, the combined dataset, with an average density 
of 0.1182, benefits from the structural advantages and chal-
lenges of the individual datasets, resulting in mean training 
and validation losses of 0.0069 and 0.0074, respectively, and 
a robust best R-squared value of 0.9188. This demonstrates 
the importance of combining diverse datasets to create a 
rich, varied learning environment that mitigates the limita-
tions of individual, real-life, sparse datasets.

The ablation study further confirmed the robustness of 
the chosen model architecture. Optimal performance was 
achieved with four attention heads and L2 regularization, 
demonstrating that moderate model complexity and appro-
priate regularization significantly improve predictive gener-
alizability and stability.

Overall, these results emphasize that while GNNs can 
achieve strong performance in predicting bleeding risk from 
anatomical graphs, their effectiveness is influenced signifi-
cantly by the density and structural properties of the data. 
Although providing a GNN model that performs well on 
various datasets is challenging, our proposed model showed 
its capability to capture complex patterns with different char-
acteristics for different datasets. While high-density datasets 
generally support better learning outcomes, our approach 
shows promising results for extremely low densities. This 
approach mitigates the challenges encountered with real-life 
datasets. In our current workflow, bleeding risk prediction 
is performed once prior to the start of the simulation for 
each patient-specific anatomy. Therefore, while our GNN 
model is capable of near real-time inference on modern 
hardware, real-time execution is not strictly required for end-
user experience in this application. The critical factors are 
accuracy and reproducibility of the risk assessment, which 
enable realistic and safe simulation scenarios. However, our 
framework encountered some limitations. During the pre-
processing stage, VesselVio, which was used to extract ves-
sel structure to graphs, only accepts pre-segmented binary 
CT and MRI scan images. Therefore, we had to eliminate 
non-binary images. This limited the number of samples we 
could use during the training. Another limitation of our 
current approach is the reliance on the Hagen–Poiseuille 
assumption, which considers ideal cylindrical vessels and 
steady flow. Real human vasculature is more complex 

(non-uniform cross-sections, branching flows, etc.). While 
our risk labeling heuristic captures the riskier intuition, it 
may not account for other factors like vessel wall integrity or 
surrounding tissue support. This means our GNN is learning 
a simplified representation of bleeding risk. This is accept-
able for simulation training as we are not predicting actual 
patient outcomes, but it means the model might not directly 
translate to a clinical diagnostic tool without further valida-
tion or augmentation. In the future, incorporating patient-
specific variables such as blood pressure and coagulopathy 
status into the model could make the risk predictions more 
personalized.

Conclusion

This study demonstrates the application of GNNs for pre-
dicting internal bleeding risk from medical imaging data 
and highlights the significant potential of this approach in 
enhancing the realism and effectiveness of surgical simu-
lations. Our framework utilizes GATs for node regression 
tasks within the vascular structures derived from real-life 
CT and MRI scan images. The evaluation of our model’s 
performance, conducted through comprehensive testing and 
validated by a tenfold cross-validation, underscores the accu-
racy and reliability of our framework.

The combination of various datasets with different charac-
teristics, 1708 graphs with over 354,748 nodes and 413,147 
edges, demonstrated promising results with mean training 
loss and validation loss of 0.0069 and 0.0074, respectively. 
Furthermore, the high R-squared score of 0.9188 reflects 
our model’s accuracy in predicting bleeding and its capac-
ity to generalize across diverse medical imaging datasets. 
Our model’s ability to adapt to different datasets is essential 
for developing surgical simulations that can be applied to 
various clinical scenarios. Moreover, the minimal deviation 
between training and validation losses highlights the model’s 
stability and predictive consistency, which are crucial for its 
implementation in real-world applications.

Additionally, as a case study, we developed a VR simula-
tor for an intra-abdominal bleeding scenario to demonstrate 
the practical integration of our GNN predictions. The inte-
gration of GAT bleeding probabilities within an immersive 
VR environment provided a unique opportunity to train and 
test surgical skills accurately in a risk-free environment. This 
connection of AI-based risk modeling with interactive simu-
lation allowed each run of the simulator to present a slightly 
different scenario driven by patient-specific data, thereby 
increasing the training value.

The potential for further advancement of the model to 
include more complex bleeding scenarios, coupled with 
the integration of real-time patient data or sensor feed-
back into the model, presents a promising avenue for 
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creating engaging, effective, and realistic medical simula-
tions. Another promising avenue is to validate and refine 
the model using actual clinical cases of hemorrhage, which 
could improve its fidelity beyond the current heuristic-based 
labeling. Even in its present form, our framework presents 
a promising step toward creating engaging, effective, and 
data-driven realistic medical simulations. It illustrates how 
vascular risk predictions from medical imaging analysis can 
directly inform simulation training, ultimately bridging the 
gap between computational modeling and hands-on medical 
education.
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